CISC829: Advanced Topics in Algorithms and Complexity Theory
Prof. Christopher Rasmussen
Course Description
Introduction to research in computational complexity theory. Computational models: nondeterministic, alternating, and probabilistic machines. Boolean circuits. Complexity classes associated with these models: NP, Polynomial hierarchy, BPP, P/poly, etc. Complete problems. Interactive proof systems and probabilistically checkable proofs: IP=PSPACE and NP=PCP (log n, l). Definitions of randomness. Pseudorandomness and derandomizations. Lower bounds for concrete models such as algebraic decision trees, bounded-depth circuits, and monotone circuits.
CISC829:
Mobile Robot Programming
Prof. Christopher Rasmussen
Course Description
A hands-on approach to implementing mobile robot algorithms in simulation and on a group of small wheeled robots. Includes low- level motor control and reactive obstacle avoidance; high-level control including navigation, localization, and planning; vision-based sensing for tracking and mapping; and issues surrounding multi-robot cooperation.
Mobile Robot Platforms: Examples
Non-locomotion actuators
Robotic Sensors
Mars rover anaglyph
Velodyne
ladar
CMU NIR + visible light vegetation inference (NDVI)
Structured light stereo (indoor/night only)
| Kinect | Asus Xtion Pro Live |
FOV | 57° X 43° | 58° X 45° |
Range | 1.2-3.5 m | 0.8-3.5 m |
Resolution | 640 x 480 (0.09° / pixel) | 640 x 480 (0.09° / pixel) |
Update rate | 30 Hz, 9.2 M points / s | 30 Hz @ 640 x 480 60 Hz @ 320 x 240 |
Dimensions | Stripped (no case, no base) 183 mm W 32 mm H 52 mm D | 180 mm W 24 mm H (no base) 36 mm D |
Weight | 148 g (stripped) | 77 g (no case) ~140 g (with case) |
Power | 12 V @ 1 A | 5 V USB |
Kinect: Sample RGB and depth images
Stereo Vision
| Pt. Grey Bumblebee2 |
FOV | 43° x 32°, 65° x 49°, or 100° x 75° |
Range | 0.5-30 m |
Resolution | 640 x 480 |
Update rate | 48 Hz @ 640 x 480 (14.7 M points / s) 20 Hz @ 1024 x 768 (15.7 M points / s) |
Dimensions | 157 mm W x 36 mm H x 47.4 mm D |
Weight | 342 g |
Power | 12 V, ~0.2 A |
“TerraMax”
VIAC, 2010 (Broggi et al.)
Velodyne HDL-64E ladar
Velodyne HDL-32E ladar
Velodyne driving data (U. Koblenz-Landau)
Google Car (from IROS 2011 keynote)
(6:40-9:40)
CMU “Boss” (1st place in Urban Challenge)
Stanford “Junior” (2nd place)
MIT “Talos” (4th place)
Hokuyo UTM-30LX ladar
3-D Point Clouds via Nodding/Spinning
Chestnutt et al., IROS 2009
3-D Point Clouds via Nodding/Spinning
Zebedee demo
3-D Point Clouds via Nodding/Spinning
UD Warthog
Warthog Sensing: Omni Camera, Tilt Ladar
Warthog in action
Warthog timelapse
UD Create Robot
MIT Urban Challenge modules
Key Algorithmic Issues
Control: Balancing (Tokyo Gakuin U.)
Control: U. Pennsylania quadrotor
Motion Planning: V-REP Simulator
Motion Planning: Little Dog at USC
Tracking: Willow Garage project
Key Algorithmic Issues
MIT quadrotor doing obstacle avoidance
with onboard ladar sensing (3:00)
Object detection (Burrus' RGBDemo)
Feature-based Place Recognition (Oxford)
KinectFusion (SIGGRAPH 2011)
Intel/UW SLAM from stereo (1:33)
Key Algorithmic Issues
Grasping: PR2 at TU Munich
Multi-robot collision avoidance: Willow Garage
Coordination: U. Pennsylvania nano-quadrotors
Cooperative Pushing: U. Pennsylvania
Administrative Details