1 of 40

BRANCH-E&TC ENGINEERING

SEM – 3RD

SUBJECT-DIGITAL

TOPIC- LOGIC GATE

FACULTY-ER S MOHANTA.

2 of 40

Chapter Goals

  • Identify the basic gates and describe the behavior of each
  • Describe how gates are implemented using transistors
  • Combine basic gates into circuits
  • Describe the behavior of a gate or circuit using Boolean expressions, truth tables, and logic diagrams

2

3 of 40

Chapter Goals

  • Compare and contrast a half adder �and a full adder
  • Describe how a multiplexer works
  • Explain how an S-R latch operates
  • Describe the characteristics of the four generations of integrated circuits

3

4 of 40

Computers and Electricity

Gate

A device that performs a basic operation on

electrical signals

Circuits

Gates combined to perform more

complicated tasks

4

5 of 40

Computers and Electricity

How do we describe the behavior of gates and circuits?

Boolean expressions

Uses Boolean algebra, a mathematical notation for expressing two-valued logic

Logic diagrams

A graphical representation of a circuit; each gate has its

own symbol

Truth tables

A table showing all possible input value and the associated

output values

5

6 of 40

Gates

Six types of gates

    • NOT
    • AND
    • OR
    • XOR
    • NAND
    • NOR

Typically, logic diagrams are black and white with gates distinguished only by their shape

We use color for emphasis (and fun)

6

7 of 40

NOT Gate

A NOT gate accepts one input signal (0 or 1) and returns the opposite signal as output

7

Figure 4.1 Various representations of a NOT gate

8 of 40

AND Gate

An AND gate accepts two input signals

If both are 1, the output is 1; otherwise,

the output is 0

8

Figure 4.2 Various representations of an AND gate

9 of 40

OR Gate

An OR gate accepts two input signals

If both are 0, the output is 0; otherwise,

the output is 1

9

Figure 4.3 Various representations of a OR gate

10 of 40

XOR Gate

10

Figure 4.4 Various representations of an XOR gate

An XOR gate accepts two input signals

If both are the same, the output is 0; otherwise,

the output is 1

11 of 40

XOR Gate

Note the difference between the XOR gate �and the OR gate; they differ only in one �input situation

When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0

XOR is called the exclusive OR

11

12 of 40

NAND Gate

The NAND gate accepts two input signals

If both are 1, the output is 0; otherwise,

the output is 1

Figure 4.5 Various representations of a NAND gate

13 of 40

NOR Gate

13

Figure 4.6 Various representations of a NOR gate

The NOR gate accepts two input signals

If both are 0, the output is 1; otherwise,

the output is 0

14 of 40

Review of Gate Processing

A NOT gate inverts its single input

An AND gate produces 1 if both input values are 1

An OR gate produces 0 if both input values are 0

An XOR gate produces 0 if input values are the same

A NAND gate produces 0 if both inputs are 1

A NOR gate produces a 1 if both inputs are 0

14

15 of 40

Gates with More Inputs

Gates can be designed to accept three or more input values

A three-input AND gate, for example, produces an output of 1 only if all input values are 1

15

Figure 4.7 Various representations of a three-input AND gate

16 of 40

Constructing Gates

Transistor

A device that acts either as a wire that conducts electricity or as a resistor that blocks the flow of electricity, depending on the voltage level of an input signal

A transistor has no moving parts, yet acts like �a switch

It is made of a semiconductor material, which is neither a particularly good conductor of electricity nor a particularly good insulator

16

17 of 40

Constructing Gates

A transistor has three terminals

    • A source
    • A base
    • An emitter, typically connected to a ground wire

If the electrical signal is grounded, it is allowed to flow through an alternative route to the ground (literally) where it can do no harm

17

Figure 4.8 The connections of a transistor

18 of 40

Constructing Gates

The easiest gates to create are the NOT, NAND, and NOR gates

18

Figure 4.9 Constructing gates using transistors

19 of 40

Circuits

Combinational circuit

The input values explicitly determine the output

Sequential circuit

The output is a function of the input values and the existing state of the circuit

We describe the circuit operations using

Boolean expressions

Logic diagrams

Truth tables

19

Are you surprised?

20 of 40

Combinational Circuits

Gates are combined into circuits by using the output of one gate as the input for another

20

21 of 40

Combinational Circuits

Three inputs require eight rows to describe all possible input combinations

This same circuit using a Boolean expression is (AB + AC)

21

22 of 40

Combinational Circuits

Consider the following Boolean expression A(B + C)

22

Does this truth table look familiar?

Compare it with previous table

23 of 40

Combinational Circuits

Circuit equivalence

Two circuits that produce the same output for identical input

Boolean algebra allows us to apply provable mathematical principles to help design circuits

A(B + C) = AB + BC (distributive law) so circuits must be equivalent

23

24 of 40

Properties of Boolean Algebra

24

25 of 40

Adders

At the digital logic level, addition is performed in binary

Addition operations are carried out �by special circuits called, appropriately, adders

25

26 of 40

Adders

The result of adding two binary digits could produce a carry value

Recall that 1 + 1 = 10 �in base two

Half adder

A circuit that computes the sum of two bits �and produces the correct carry bit

26

Truth table

27 of 40

Adders

Circuit diagram representing �a half adder

Boolean expressions

sum = A ⊕ B

carry = AB

27

28 of 40

Adders

Full adder

A circuit that takes the carry-in value into account

28

Figure 4.10 A full adder

29 of 40

Multiplexers

Multiplexer

A circuit that uses a few input control signals to determine which of several output data lines is routed to its output

29

30 of 40

Multiplexers

The control lines S0, S1, and S2 �determine which of eight other input lines

(D0 … D7)

are routed to the output (F)

30

Figure 4.11 A block diagram of a multiplexer with three select control lines

31 of 40

Circuits as Memory

Digital circuits can be used to store information

These circuits form a sequential circuit, because the output of the circuit is also used as input to the circuit

31

32 of 40

Circuits as Memory

An S-R latch stores a single binary digit �(1 or 0)

There are several ways an S-R latch circuit can be designed using various kinds of gates

32

Figure 4.12 An S-R latch

33 of 40

Circuits as Memory

The design of this circuit guarantees that the two outputs X and Y are always complements of each other

The value of X at any point in time is considered to be the current state of the circuit

Therefore, if X is 1, the circuit is storing a 1; if X is 0, the circuit is storing a 0

33

Figure 4.12 An S-R latch

34 of 40

Integrated Circuits

Integrated circuit (also called a chip)

A piece of silicon on which multiple gates have been embedded

Silicon pieces are mounted on a plastic or ceramic package with pins along the edges that can be soldered onto circuit boards or inserted into appropriate sockets

34

35 of 40

Integrated Circuits

Integrated circuits (IC) are classified by the number of gates contained in them

35

36 of 40

Integrated Circuits

36

Figure 4.13 An SSI chip contains independent NAND gates

37 of 40

CPU Chips

The most important integrated circuit �in any computer is the Central Processing Unit, or CPU

Each CPU chip has a large number of pins through which essentially all communication in a computer system occurs

37

38 of 40

Ethical Issues

Email Privacy

Explain why privacy is an illusion.

Who can read your email?

Do you send personal email from work?

Does everyone in your family use email?

38

39 of 40

Who am I?

39

All the world knows my name. What is

it and why do people know it?

40 of 40

Do you know?

40