
Jinja

● The folks behind Flask are also the developers of a popular templating engine
called Jinja.

● The primary motivation for a templating engine like this is for us to be able to
procedurally generate HTML based on the value of some variable(s) in our
programs.

● This allows us to mix Python and HTML!

● Let’s build a simple web application to create a multiplication table, where the
size of the table is determined by the user, and we generate the HTML for the
table based on the size the user wants.

● We will be making use of Flask’s render_template() method rather
extensively in this application.

● First, the basic app.

● First, the basic app.

from flask import Flask, render_template, request
app = Flask(__name__)

@app.route("/")
def mult_table():

● Let’s start by just displaying a simple form to the user.

from flask import Flask, render_template, request
app = Flask(__name__)

@app.route("/")
def mult_table():

● Let’s start by just displaying a simple form to the user.

from flask import Flask, render_template, request
app = Flask(__name__)

@app.route("/")
def mult_table():

return render_template("form.html")

● By default, Flask will look in the templates/ directory to try to find a template
with that name, so first we create that subdirectory, and then we toss a very
simple form in there. (No Jinja in this one, since it’s static.)

<!DOCTYPE html>
<html>
 <head>
 <title>
 Multiplication Table
 </title>
 </head>
 <body>
 <form action="/" method="post">
 <input name="size" type="number" placeholder="dimension"/>
 <input name="submit" type="submit" />
 </form>
 </body>
</html>

<!DOCTYPE html>
<html>
 <head>
 <title>
 Multiplication Table
 </title>
 </head>
 <body>
 <form action="/" method="post">
 <input name="size" type="number" placeholder="dimension"/>
 <input name="submit" type="submit" />
 </form>
 </body>
</html>

<!DOCTYPE html>
<html>
 <head>
 <title>
 Multiplication Table
 </title>
 </head>
 <body>
 <form action="/" method="post">
 <input name="size" type="number" placeholder="dimension"/>
 <input name="submit" type="submit" />
 </form>
 </body>
</html>

● Okay, so now we’re good on displaying the form. But what about when the
user submits the form? Right now, the form just keeps refreshing.

from flask import Flask, render_template, request
app = Flask(__name__)

@app.route("/")
def mult_table():

return render_template("form.html")

● Okay, so now we’re good on displaying the form. But what about when the
user submits the form? Right now, the form just keeps refreshing.

from flask import Flask, render_template, request
app = Flask(__name__)

@app.route("/", methods=["GET", "POST"])
def mult_table():

return render_template("form.html")

● Okay, so now we’re good on displaying the form. But what about when the
user submits the form? Right now, the form just keeps refreshing.

from flask import Flask, render_template, request
app = Flask(__name__)

@app.route("/", methods=["GET", "POST"])
def mult_table():

if request.method == "GET":
return render_template("form.html")

● Okay, so now we’re good on displaying the form. But what about when the
user submits the form? Right now, the form just keeps refreshing.

from flask import Flask, render_template, request
app = Flask(__name__)

@app.route("/", methods=["GET", "POST"])
def mult_table():

if request.method == "GET":
return render_template("form.html")

our form is set up to submit via POST
elif request.method == "POST":

return render_template("table.html")

● Time to create another template. We know that HTML tables consist of <tr>
tags for each row, consisting of a set of <td> tags for columns. So that lets us
craft the super-basic idea for a template.

<!DOCTYPE html>
<html>
 <head>
 <title>Table</title>
 </head>
 <body>
 <table>

 <tr>

 <td>

 </td>

 </tr>

 </table>
 </body>
</html>

● Time to create another template. We know that HTML tables consist of <tr>
tags for each row, consisting of a set of <td> tags for columns. So that lets us
craft the super-basic idea for a template.

● Next, we need to somehow convey to this template the number of rows the
user supplied. We can do this by altering our call to render_template().

● Okay, so now we’re good on displaying the form. But what about when the
user submits the form? Right now, the form just keeps refreshing.

from flask import Flask, render_template, request
app = Flask(__name__)

@app.route("/", methods=["GET", "POST"])
def mult_table():

if request.method == "GET":
return render_template("form.html")

our form is set up to submit via POST
elif request.method == "POST":

return render_template("table.html")

● Okay, so now we’re good on displaying the form. But what about when the
user submits the form? Right now, the form just keeps refreshing.

from flask import Flask, render_template, request
app = Flask(__name__)

@app.route("/", methods=["GET", "POST"])
def mult_table():

if request.method == "GET":
return render_template("form.html")

our form is set up to submit via POST
elif request.method == "POST":

return render_template("table.html", dim=request.form.get("size"))

● Okay, so now we’re good on displaying the form. But what about when the
user submits the form? Right now, the form just keeps refreshing.

from flask import Flask, render_template, request
app = Flask(__name__)

@app.route("/", methods=["GET", "POST"])
def mult_table():

if request.method == "GET":
return render_template("form.html")

our form is set up to submit via POST
elif request.method == "POST":

return render_template("table.html", dim=request.form.get("size"))

● Time to create another template. We know that HTML tables consist of <tr>
tags for each row, consisting of a set of <td> tags for columns. So that lets us
craft the super-basic idea for a template.

● Next, we need to somehow convey to this template the number of rows the
user supplied. We can do this by altering our call to render_template().

● Effectively, “dim” is now a variable within Jinja, and Jinja allows us to use a
Python-like syntax interspersed within our HTML.

● Jinja is introduced in the template in one of two ways:
○ {% ... %}

■ These delimiters indicate that what is between them is control-flow or logic.
○ {{ … }}

■ These delimiters indicate that what is between them should be evaluated and effectively
“printed” as HTML.

● Exactly what you can do with Jinja is an exercise for home, but its syntax is
generally Python like, with a couple of quirks due to the way it is interspersed
with HTML. Let’s see how we can use it to generate the HTML we need.

<!DOCTYPE html>
<html>
 <head>
 <title>Table</title>
 </head>
 <body>
 <table>

 <tr>

 <td>

 </td>

 </tr>

 </table>
 </body>
</html>

<!DOCTYPE html>
<html>
 <head>
 <title>Table</title>
 </head>
 <body>
 <table>
 // loop to repeat “dim” times (“dim” # of rows)
 <tr>
 // loop to repeat “dim” times (“dim” # of columns)
 <td>
 // print out that value of the cell between <td>s
 </td>

 </tr>

 </table>
 </body>
</html>

<!DOCTYPE html>
<html>
 <head>
 <title>Table</title>
 </head>
 <body>
 <table>
 {% for i in range(dim) %}
 <tr>
 // loop to repeat “dim” times (“dim” # of columns)
 <td>
 // print out that value of the cell between <td>s
 </td>

 </tr>
 {% endfor %}
 </table>
 </body>
</html>

<!DOCTYPE html>
<html>
 <head>
 <title>Table</title>
 </head>
 <body>
 <table>
 {% for i in range(dim) %}
 <tr>
 {% for j in range(dim) %}
 <td>
 // print out that value of the cell between <td>s
 </td>
 {% endfor %}
 </tr>
 {% endfor %}
 </table>
 </body>
</html>

<!DOCTYPE html>
<html>
 <head>
 <title>Table</title>
 </head>
 <body>
 <table>
 {% for i in range(dim) %}
 <tr>
 {% for j in range(dim) %}
 <td>
 {{ (i + 1) * (j + 1) }}
 </td>
 {% endfor %}
 </tr>
 {% endfor %}
 </table>
 </body>
</html>

<!DOCTYPE html>
<html>
 <head>
 <title>Table</title>
 </head>
 <body>
 <table>
 {% for i in range(dim) %}
 <tr>
 {% for j in range(dim) %}
 <td>
 {{ (i + 1) * (j + 1) }}
 </td>
 {% endfor %}
 </tr>
 {% endfor %}
 </table>
 </body>
</html>

<!DOCTYPE html>
<html>
 <head>
 <title>Table</title>
 </head>
 <body>
 <table>
 {% for i in range(dim|int) %}
 <tr>
 {% for j in range(dim|int) %}
 <td>
 {{ (i + 1) * (j + 1) }}
 </td>
 {% endfor %}
 </tr>
 {% endfor %}
 </table>
 </body>
</html>

<!DOCTYPE html>
<html>
 <head>
 <title>Table</title>
 </head>
 <body>
 <table border=1>
 {% for i in range(dim|int) %}
 <tr>
 {% for j in range(dim|int) %}
 <td>
 {{ (i + 1) * (j + 1) }}
 </td>
 {% endfor %}
 </tr>
 {% endfor %}
 </table>
 </body>
</html>

It may not look beautiful… but
that’s what CSS is for!

