
CS61B Fall 2024

Inheritance
Discussion 03

CS61B Fall 2024

Example Agenda

- 1:10 - 1:15 ~ announcements
- 1:15 - 1:30 ~ content review
- 1:30 - 1:40 ~ question 1
- 1:40 - 1:55 ~ question 2
- Question 3 if time

CS61B Fall 2024

Announcements

● Midterm 1 on Thursday 9/27 7-9 PM

○ Review Session Friday 9/20

11-1PM in Soda labs

● Lab 4 due Friday 9/20

● Project 1B due 9/20

● Weekly Survey 4 due Monday 9/16

○ Grace period till Tuesday 9/17

CS61B Fall 2024

Content Review

CS61B Fall 2024

Classes
Subclasses (or child classes) are classes that inherit from another class. This means that they have access to

all non-private functions and variables of their parent class in addition to any functions and variables defined

in the child class.

Example: Corgi, Pitbull

Superclasses or parent classes are classes that are inherited by another class.

Example: Dog

Dog

Corgi Pitbull

CS61B Fall 2024

Fun with Methods

Method Overloading is done when there are multiple methods with the same name, but different

parameters.

public void barkAt(Dog d) { System.out.print(“Woof, it’s another dog!”); }
public void barkAt(CS61BStaff s) { System.out.print(“Woof, what is this?”); }

* Food for thought: what is an advantage of method overloading? Hint: think about System.out.print

Method Overriding is done when a subclass has a method with the exact same function signature as a

method in its superclass. It is usually marked with the @Override tag.

In Dog class:
public void speak() { System.out.print(“Woof, I’m a dog!”); }

In Corgi Class, which inherits from Dog:
@Override
public void speak() { System.out.print(“Woof, I’m a corgi!”); }

CS61B Fall 2024

Interfaces

Interfaces are implemented by classes. They describe a narrow ability that can apply to many classes that

may or may not be related to one another.

They do not usually implement the methods they specify.

Interface methods are inherently public, which must be specified in the subclass that implements them

(subclasses must override and implement interface methods).

Interfaces cannot be instantiated. (ie. Friendly f = new Friendly(); does not compile)

Dog

CuteFriendly

CS61BStaff

CS61B Fall 2024

Interfaces vs. Classes

● A class can implement many interfaces and extend only one class

● Interfaces tell us what we want to do but not how; classes tell us how we want to do it

● Interfaces can have empty method bodies (that must be filled in by subclasses)

● With extends, subclasses inherit their parent’s instance and static variables, methods (can
be overridden), nested classes

○ But not constructors!

○ Use super to refer to the parent class

CS61B Fall 2024

Implementation

interface Cute {...}

interface Friendly {...}

class CS61BStaff implements Friendly {...}

class Dog implements Cute, Friendly {...}

class Corgi extends Dog {...}

class Pitbull extends Dog {...}

CuteFriendly

CS61B Staff Dog

Corgi Pitbull

CS61B Fall 2024

Static vs. Dynamic Type

A variable’s static type is specified at declaration, whereas its dynamic type is specified at instantiation (e.g.

when using new).

Dog d = new Corgi();

Static type of d is Dog Dynamic type of d is Corgi

The static and dynamic type of a variable have to complement each other or else the code will error. For
example, a Dog is not necessarily a Corgi, so Corgi c = new Dog(); will not compile.

General rule of thumb: Given LHS = RHS, is RHS guaranteed to be a LHS?

Though interfaces cannot be instantiated, they can be static types (ie. Cute c = new Corgi();)

CS61B Fall 2024

Casting

Casting allows us to tell the compiler to treat the static type of some variable as whatever we
want it to be (need to have a superclass/subclass relationship). If the cast is valid, for that line
only we will treat the static type of the casted variable to be whatever we casted it to.

Animal a = new Dog();
Dog d = a; // Compiler error: an animal is not a dog
Dog d = (Dog) a; // Valid cast: an animal could reasonably be a dog
d = new Dog();
a = (Animal) d; // Valid cast: a dog definitely is an animal
Cat c = new Cat();
d = (Dog) c; // Compiler error: a cat is definitely not a dog
a = c;
d = (Dog) a; // Cast compiles because an animal could reasonably be a dog.

 During runtime, errors

CS61B Fall 2024

All these concepts - What’s the point?
It allows for Subtype Polymorphism. (You’ll also see this in lecture this week).
Polymorphism means “providing a single interface to entities of different types”

Example:
Consider a variable deque of static type Deque:
When you call deque.addFirst(), the actual behavior is based on the dynamic type.
Deque deque = new LinkedListDeque();// Runs LinkedListDeque’s addFirst
Deque deque = new ArrayDeque();// Runs ArrayDeque’s addFirst

Java automatically selects the right behavior using what is sometimes called “dynamic method
selection”.

CS61B Fall 2024

Involves casting?

A x = (B) y;
Is B in a superclass-subclass

relationship with y’s static type?
(No siblings)

A x = y;
Is the static type of y A, or a

subclass of A?

Is B A, or a subclass
of A?

Is the dynamic type of y
B, or a subclass of B?

Compiler error OK!

yes

yes

yes

yes

yes

no

no
no

no

Variable assignment rules

no

Runtime error

Compile Time

Runtime

CS61B Fall 2024

Involves casting?Method call rules

((A) x).foo(y);
x.foo((A) y);

((A) x).foo((B) y);
Are the casts valid at compile time
(check the box with the star on the

variable assignments slide)?

x.foo(y);
Look in static type of x. Does it

contain, or inherits a method called
foo that takes in 1 argument of type

y’s static type or y’s static type
superclasses?

Lock in the found method.
Was there any casting

involved in this method call?

Are the casts valid at runtime (check the box
with the heart on the variable assignments

slide)?

Does the dynamic type of x
contains a method that
overrides the locked-in

method?

Compiler error

Runtime error

Is the locked-in method
static?

Run the locked-in
method

Run the new
overriding method

yes

yes, and continue as if those casts
are the static types of the variables

yes

yesno

yes

yes

no

no

no

no
no

no

Compile Time

Runtime

yes

CS61B Fall 2024

Worksheet

CS61B Fall 2024

1A It’s a Bird! It’s a Plane! It’s a CatBus!
public class CatBus ____________________ __________, __________ {

@Override
__________ __________ __________ {

// CatBus revs its engine, implementation not shown
}

@Override
__________ __________ __________ {

// CatBus honks, implementation not shown
}

/** Allows CatBus to honk at other CatBuses */
public void conversation(CatBus target) {

honk();
target.honk();

}
}

Fill in the CatBus class so CatBuses can rev their engines and honk at other CatBuses.

CS61B Fall 2024

1A It’s a Bird! It’s a Plane! It’s a CatBus!
public class CatBus implements Honker, Vehicle {

@Override
__________ __________ __________ {

// CatBus revs its engine, implementation not shown
}

@Override
__________ __________ __________ {

// CatBus honks, implementation not shown
}

/** Allows CatBus to honk at other CatBuses */
public void conversation(CatBus target) {

honk();
target.honk();

}
}

Fill in the CatBus class so CatBuses can rev their engines and honk at other CatBuses.

CS61B Fall 2024

1A It’s a Bird! It’s a Plane! It’s a CatBus!
public class CatBus implements Honker, Vehicle {

@Override
public void revEngine() {

// CatBus revs its engine, implementation not shown
}

@Override
__________ __________ __________ {

// CatBus honks, implementation not shown
}

/** Allows CatBus to honk at other CatBuses */
public void conversation(CatBus target) {

honk();
target.honk();

}
}

Fill in the CatBus class so CatBuses can rev their engines and honk at other CatBuses.

CS61B Fall 2024

1A It’s a Bird! It’s a Plane! It’s a CatBus!
public class CatBus implements Honker, Vehicle {

@Override
public void revEngine() {

// CatBus revs its engine, implementation not shown
}

@Override
public void honk() {

// CatBus honks, implementation not shown
}

/** Allows CatBus to honk at other CatBuses */
public void conversation(CatBus target) {

honk();
target.honk();

}
}

Fill in the CatBus class so CatBuses can rev their engines and honk at other CatBuses.

CS61B Fall 2024

1B It’s a Bird! It’s a Plane! It’s a CatBus!

/** Allows CatBus to honk at other CatBuses */
public void conversation(CatBus target) {

honk();
target.honk();

}

Update the conversation method signature so that CatBuses can honk at CatBuses and
Gooses while only having one argument, target.

CS61B Fall 2024

1B It’s a Bird! It’s a Plane! It’s a CatBus!

/** Allows CatBus to honk at other CatBuses and Gooses */
public void conversation(CatBus target) {
public void conversation(Honker target) {

honk();
target.honk();

}

Update the conversation method signature so that CatBuses can honk at CatBuses and
Gooses while only having one argument, target.

CS61B Fall 2024

1C It’s a Bird! It’s a Plane! It’s a CatBus!

Assume that CatBus and Goose use the default constructor. Which of the following lines will compile?

Honker cb = new CatBus();
CatBus g = new Goose();
Honker h = new Honker();
CanadaGoose cg = new Goose();
Honker hcg = new CanadaGoose();

CS61B Fall 2024

1C It’s a Bird! It’s a Plane! It’s a CatBus!
Honker cb = new CatBus();

Involves casting?

A x = (B) y;
Is B in a superclass-subclass relationship

with y’s static type? (No siblings)

A x = y;
Is the static type of y A, or a subclass

of A?

Is B A, or a subclass of A?

Is the dynamic type of y
B, or a subclass of B?

Compiler error OK!

yes

yes

yes

yes

yes

no

no
no

no

no

Runtime error

CS61B Fall 2024

1C It’s a Bird! It’s a Plane! It’s a CatBus!

Assume that CatBus and Goose use the default constructor. Which of the following lines will compile?

Honker cb = new CatBus(); // Compiles - a CatBus is a kind of Honker
CatBus g = new Goose();
Honker h = new Honker();
CanadaGoose cg = new Goose();
Honker hcg = new CanadaGoose();

CS61B Fall 2024

1C It’s a Bird! It’s a Plane! It’s a CatBus!
CatBus g = new Goose();

Involves casting?

A x = (B) y;
Is B in a superclass-subclass relationship

with y’s static type? (No siblings)

A x = y;
Is the static type of y A, or a subclass

of A?

Is B A, or a subclass of A?

Is the dynamic type of y
B, or a subclass of B?

Compiler error OK!

yes

yes

yes

yes

yes

no

no
no

no

no

Runtime error

CS61B Fall 2024

1C It’s a Bird! It’s a Plane! It’s a CatBus!

Assume that CatBus and Goose use the default constructor. Which of the following lines will compile?

Honker cb = new CatBus(); // Compiles - a CatBus is a kind of Honker
CatBus g = new Goose(); // Errors - a Goose is not a CatBus, even though

they are both Honkers (“siblings” in the
inheritance tree)

Honker h = new Honker();
CanadaGoose cg = new Goose();
Honker hcg = new CanadaGoose();

CS61B Fall 2024

1C It’s a Bird! It’s a Plane! It’s a CatBus!
Honker h = new Honker();

Compiler Error - cannot new interface.

This was not included in the flowchart - it is more similar to a syntax error.

In Java, “new”-ing an interface is never allowed!

CS61B Fall 2024

1C It’s a Bird! It’s a Plane! It’s a CatBus!

Assume that CatBus and Goose use the default constructor. Which of the following lines will compile?

Honker cb = new CatBus(); // Compiles - a CatBus is a kind of Honker
CatBus g = new Goose(); // Errors - a Goose is not a CatBus, even though

they are both Honkers (“siblings” in the
inheritance tree)

Honker h = new Honker(); // Errors - cannot instantiate an interface
CanadaGoose cg = new Goose();
Honker hcg = new CanadaGoose();

CS61B Fall 2024

1C It’s a Bird! It’s a Plane! It’s a CatBus!
CanadaGoose cg = new Goose();

Involves casting?

A x = (B) y;
Is B in a superclass-subclass relationship

with y’s static type? (No siblings)

A x = y;
Is the static type of y A, or a subclass

of A?

Is B A, or a subclass of A?

Is the dynamic type of y
B, or a subclass of B?

Compiler error OK!

yes

yes

yes

yes

yes

no

no
no

no

no

Runtime error

CS61B Fall 2024

1C It’s a Bird! It’s a Plane! It’s a CatBus!

Assume that CatBus and Goose use the default constructor. Which of the following lines will compile?

Honker cb = new CatBus(); // Compiles - a CatBus is a kind of Honker
CatBus g = new Goose(); // Errors - a Goose is not a CatBus, even though

they are both Honkers (“siblings” in the
inheritance tree)

Honker h = new Honker(); // Errors - cannot instantiate an interface
CanadaGoose cg = new Goose(); // Errors - a CanadaGoose is a Goose, not

 necessarily the other way around
Honker hcg = new CanadaGoose();

CS61B Fall 2024

1C It’s a Bird! It’s a Plane! It’s a CatBus!
Honker hcg = new CanadaGoose();

Involves casting?

A x = (B) y;
Is B in a superclass-subclass relationship

with y’s static type? (No siblings)

A x = y;
Is the static type of y A, or a subclass

of A?

Is B A, or a subclass of A?

Is the dynamic type of y
B, or a subclass of B?

Compiler error OK!

yes

yes

yes

yes

yes

no

no
no

no

no

Runtime error

CS61B Fall 2024

1C It’s a Bird! It’s a Plane! It’s a CatBus!

Assume that CatBus and Goose use the default constructor. Which of the following lines will compile?

Honker cb = new CatBus(); // Compiles - a CatBus is a kind of Honker
CatBus g = new Goose(); // Errors - a Goose is not a CatBus, even though

they are both Honkers (“siblings” in the
inheritance tree)

Honker h = new Honker(); // Errors - cannot instantiate an interface
CanadaGoose cg = new Goose(); // Errors - a CanadaGoose is a Goose, not

 necessarily the other way around
Honker hcg = new CanadaGoose(); // Compiles - a CanadaGoose is a kind of Honker

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty");
a.greet(c);
a.sleep();
c.play()
c.greet(d);
((Animal) c).greet(d);
d.sleep();
a = c;
a.play(14);
((Cat) b).play();
d = (Dog) a;
c = a;

CS61B Fall 2024

2A Raining Cats and Dogs
Cat e = new Animal("Kitty");

Involves casting?

A x = (B) y;
Is B in a superclass-subclass relationship

with y’s static type? (No siblings)

A x = y;
Is the static type of y A, or a subclass

of A?

Is B A, or a subclass of A?

Is the dynamic type of y
B, or a subclass of B?

Compiler error OK!

yes

yes

yes

yes

yes

no

no
no

no

no

Runtime error

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c);
a.sleep();
c.play()
c.greet(d);
((Animal) c).greet(d);
d.sleep();
a = c;
a.play(14);
((Cat) b).play();
d = (Dog) a;
c = a;

CS61B Fall 2024

a.greet(c);

2A Raining Cats and Dogs

Animal.greet(Animal)
Dog.greet(Animal)

Involves casting?

Are the casts valid at compile time ?

x.foo(y);
Does the static type of x contain, or

inherits a method called foo that takes in 1
argument of type y’s static type or y’s static

type superclasses?

Lock in the found method.
Was there any casting

involved in this method call?

Are the casts valid at runtime?

Does the dynamic type of x
contains a method that
overrides the locked-in

method?

Compiler error

Runtime error

Is the locked-in
method static?

Run the locked-in
method

Run the new
overriding method

yes

yes, treat static types of variables as
casted for that line only

yes

yes
no

yes

yes

no

no

no

no
no

no

yes

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c); Animal’s greet(Animal) Dog’s greet(Animal) ”Dog Pluto says: Woof!”
a.sleep();
c.play()
c.greet(d);
((Animal) c).greet(d);
d.sleep();
a = c;
a.play(14);
((Cat) b).play();
d = (Dog) a;
c = a;

CS61B Fall 2024

a.sleep();

2A Raining Cats and Dogs

Animal.sleep()

Involves casting?

Are the casts valid at compile time ?

x.foo(y);
Does the static type of x contain, or

inherits a method called foo that takes in 1
argument of type y’s static type or y’s static

type superclasses?

Lock in the found method.
Was there any casting

involved in this method call?

Are the casts valid at runtime?

Does the dynamic type of x
contains a method that
overrides the locked-in

method?

Compiler error

Runtime error

Is the locked-in
method static?

Run the locked-in
method

Run the new
overriding method

yes

yes, treat static types of variables as
casted for that line only

yes

yes
no

yes

yes

no

no

no

no
no

no

yes

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c); Animal’s greet(Animal) Dog’s greet(Animal) ”Dog Pluto says: Woof!”
a.sleep(); Animal’s sleep() N/A, sleep() is static “Naptime!”
c.play();
c.greet(d);
((Animal) c).greet(d);
d.sleep();
a = c;
a.play(14);
((Cat) b).play();
d = (Dog) a;
c = a;

CS61B Fall 2024

c.play();

2A Raining Cats and Dogs

Cat.play()
Cat.play()

Involves casting?

Are the casts valid at compile time ?

x.foo(y);
Does the static type of x contain, or

inherits a method called foo that takes in 1
argument of type y’s static type or y’s static

type superclasses?

Lock in the found method.
Was there any casting

involved in this method call?

Are the casts valid at runtime?

Does the dynamic type of x
contains a method that
overrides the locked-in

method?

Compiler error

Runtime error

Is the locked-in
method static?

Run the locked-in
method

Run the new
overriding method

yes

yes, treat static types of variables as
casted for that line only

yes

yes
no

yes

yes

no

no

no

no
no

no

yes

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c); Animal’s greet(Animal) Dog’s greet(Animal) ”Dog Pluto says: Woof!”
a.sleep(); Animal’s sleep() N/A, sleep() is static “Naptime!”
c.play(); Cat’s play() Cat’s play() ”Woo it is so much fun

being a cat! Meow!”
c.greet(d);
((Animal) c).greet(d);
d.sleep();
a = c;
a.play(14);
((Cat) b).play();
d = (Dog) a;
c = a;

CS61B Fall 2024

c.greet(d);

2A Raining Cats and Dogs

Cat.greet(Dog)
Cat.greet(Dog)

Involves casting?

Are the casts valid at compile time ?

x.foo(y);
Does the static type of x contain, or

inherits a method called foo that takes in 1
argument of type y’s static type or y’s static

type superclasses?

Lock in the found method.
Was there any casting

involved in this method call?

Are the casts valid at runtime?

Does the dynamic type of x
contains a method that
overrides the locked-in

method?

Compiler error

Runtime error

Is the locked-in
method static?

Run the locked-in
method

Run the new
overriding method

yes

yes, treat static types of variables as
casted for that line only

yes

yes
no

yes

yes

no

no

no

no
no

no

yes

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c); Animal’s greet(Animal) Dog’s greet(Animal) ”Dog Pluto says: Woof!”
a.sleep(); Animal’s sleep() N/A, sleep() is static “Naptime!”
c.play(); Cat's play() Cat's play() ”Woo it is so much fun

being a cat! Meow!”
c.greet(d); Cat’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
((Animal) c).greet(d);
d.sleep();
a = c;
a.play(14);
((Cat) b).play();
d = (Dog) a;
c = a;

CS61B Fall 2024

2A Raining Cats and Dogs

((Animal) c).greet(d);

Involves casting?

Are the casts valid at compile time ?

x.foo(y);
Does the static type of x contain, or

inherits a method called foo that takes in 1
argument of type y’s static type or y’s static

type superclasses?

Lock in the found method.
Was there any casting

involved in this method call?

Are the casts valid at runtime?

Does the dynamic type of x
contains a method that
overrides the locked-in

method?

Compiler error

Runtime error

Is the locked-in
method static?

Run the locked-in
method

Run the new
overriding method

yes

yes, treat static types of variables as
casted for that line only

yes

yes
no

yes

yes

no

no

no

no
no

no

Animal.greet(Animal)

yes

Cat.greet(Animal)

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c); Animal’s greet(Animal) Dog’s greet(Animal) ”Dog Pluto says: Woof!”
a.sleep(); Animal’s sleep() N/A, sleep() is static “Naptime!”
c.play() Cat's play() Cat's play() ”Woo it is so much fun

being a cat! Meow!”
c.greet(d); Cat’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
((Animal) c).greet(d); Animal’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
d.sleep();
a = c;
a.play(14);
((Cat) b).play();
d = (Dog) a;
c = a;

CS61B Fall 2024

d.sleep();

2A Raining Cats and Dogs

Dog.sleep()

Involves casting?

Are the casts valid at compile time ?

x.foo(y);
Does the static type of x contain, or

inherits a method called foo that takes in 1
argument of type y’s static type or y’s static

type superclasses?

Lock in the found method.
Was there any casting

involved in this method call?

Are the casts valid at runtime?

Does the dynamic type of x
contains a method that
overrides the locked-in

method?

Compiler error

Runtime error

Is the locked-in
method static?

Run the locked-in
method

Run the new
overriding method

yes

yes, treat static types of variables as
casted for that line only

yes

yes
no

yes

yes

no

no

no

no
no

no

yes

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c); Animal’s greet(Animal) Dog’s greet(Animal) ”Dog Pluto says: Woof!”
a.sleep(); Animal’s sleep() N/A, sleep() is static “Naptime!”
c.play() Cat's play() Cat's play() ”Woo it is so much fun

being a cat! Meow!”
c.greet(d); Cat’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
((Animal) c).greet(d); Animal’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
d.sleep(); Dog’s sleep() N/A, sleep() is static ”I love napping!”
a = c;
a.play(14);
((Cat) b).play();
d = (Dog) a;
c = a;

CS61B Fall 2024

2A Raining Cats and Dogs
a = c;

Involves casting?

A x = (B) y;
Is B in a superclass-subclass relationship

with y’s static type? (No siblings)

A x = y;
Is the static type of y A, or a subclass

of A?

Is B A, or a subclass of A?

Is the dynamic type of y
B, or a subclass of B?

Compiler error OK!

yes

yes

yes

yes

yes

no

no
no

no

no

Runtime error

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c); Animal’s greet(Animal) Dog’s greet(Animal) ”Dog Pluto says: Woof!”
a.sleep(); Animal’s sleep() N/A, sleep() is static “Naptime!”
c.play() Cat's play() Cat's play() ”Woo it is so much fun

being a cat! Meow!”
c.greet(d); Cat’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
((Animal) c).greet(d); Animal’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
d.sleep(); Dog’s sleep() N/A, sleep() is static ”I love napping!”
a = c; ok ok [no output]
a.play(14);
((Cat) b).play();
d = (Dog) a;
c = a;

CS61B Fall 2024

a.play(14);

2A Raining Cats and Dogs

Involves casting?

Are the casts valid at compile time ?

x.foo(y);
Does the static type of x contain, or

inherits a method called foo that takes in 1
argument of type y’s static type or y’s static

type superclasses?

Lock in the found method.
Was there any casting

involved in this method call?

Are the casts valid at runtime?

Does the dynamic type of x
contains a method that
overrides the locked-in

method?

Compiler error

Runtime error

Is the locked-in
method static?

Run the locked-in
method

Run the new
overriding method

yes

yes, treat static types of variables as
casted for that line only

yes

yes
no

yes

yes

no

no

no

no
no

no

yes

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c); Animal’s greet(Animal) Dog’s greet(Animal) ”Dog Pluto says: Woof!”
a.sleep(); Animal’s sleep() N/A, sleep() is static “Naptime!”
c.play() Cat's play() Cat's play() ”Woo it is so much fun

being a cat! Meow!”
c.greet(d); Cat’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
((Animal) c).greet(d); Animal’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
d.sleep(); Dog’s sleep() N/A, sleep() is static ”I love napping!”
a = c; ok ok [no output]
a.play(14); Error N/A Compiler error
((Cat) b).play();
d = (Dog) a;
c = a;

CS61B Fall 2024

2A Raining Cats and Dogs

((Cat) b).play();

Involves casting?

Are the casts valid at compile time ?

x.foo(y);
Does the static type of x contain, or

inherits a method called foo that takes in 1
argument of type y’s static type or y’s static

type superclasses?

Lock in the found method.
Was there any casting

involved in this method call?

Are the casts valid at runtime?

Does the dynamic type of x
contains a method that
overrides the locked-in

method?

Compiler error

Runtime error

Is the locked-in
method static?

Run the locked-in
method

Run the new
overriding method

yes

yes, treat static types of variables as
casted for that line only

yes

yes
no

yes

yes

no

no

no

no
no

no

Cat.play()

yes

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c); Animal’s greet(Animal) Dog’s greet(Animal) ”Dog Pluto says: Woof!”
a.sleep(); Animal’s sleep() N/A, sleep() is static “Naptime!”
c.play() Cat's play() Cat's play() ”Woo it is so much fun

being a cat! Meow!”
c.greet(d); Cat’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
((Animal) c).greet(d); Animal’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
d.sleep(); Dog’s sleep() N/A, sleep() is static ”I love napping!”
a = c; ok ok [no output]
a.play(14); Error N/A Compiler error
((Cat) b).play(); Cat’s play() Error Runtime error
d = (Dog) a;
c = a;

CS61B Fall 2024

2A Raining Cats and Dogs
d = (Dog) a;

Involves casting?

A x = (B) y;
Is B in a superclass-subclass relationship

with y’s static type? (No siblings)

A x = y;
Is the static type of y A, or a subclass

of A?

Is B A, or a subclass of A?

Is the dynamic type of y
B, or a subclass of B?

Compiler error OK!

yes

yes

yes

yes

yes

no

no
no

no

no

Runtime error

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c); Animal’s greet(Animal) Dog’s greet(Animal) ”Dog Pluto says: Woof!”
a.sleep(); Animal’s sleep() N/A, sleep() is static “Naptime!”
c.play() Cat's play() Cat's play() ”Woo it is so much fun

being a cat! Meow!”
c.greet(d); Cat’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
((Animal) c).greet(d); Animal’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
d.sleep(); Dog’s sleep() N/A, sleep() is static ”I love napping!”
a = c; ok ok [no output]
a.play(14); Error N/A Compiler error
((Cat) b).play(); Cat’s play() Error Runtime error
d = (Dog) a; ok Error Runtime error
c = a;

CS61B Fall 2024

2A Raining Cats and Dogs
c = a;

Involves casting?

A x = (B) y;
Is B in a superclass-subclass relationship

with y’s static type? (No siblings)

A x = y;
Is the static type of y A, or a subclass

of A?

Is B A, or a subclass of A?

Is the dynamic type of y
B, or a subclass of B?

Compiler error OK!

yes

yes

yes

yes

yes

no

no
no

no

no

Runtime error

CS61B Fall 2024

2A Raining Cats and Dogs
Animal a = new Dog("Pluto");
Animal b = new Animal("Bear");
Cat c = new Cat("Garfield");
Dog d = new Dog("Lucky");

Compile Time (static) Runtime (dynamic) Output

Cat e = new Animal("Kitty"); Error N/A CE
a.greet(c); Animal’s greet(Animal) Dog’s greet(Animal) ”Dog Pluto says: Woof!”
a.sleep(); Animal’s sleep() N/A, sleep() is static “Naptime!”
c.play() Cat's play() Cat's play() ”Woo it is so much fun

being a cat! Meow!”
c.greet(d); Cat’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
((Animal) c).greet(d); Animal’s greet(Animal) Cat’s greet(Animal) ”Cat Garfield says: Meow!”
d.sleep(); Dog’s sleep() N/A, sleep() is static ”I love napping!”
a = c; ok ok [no output]
a.play(14); Error N/A Compiler error
((Cat) b).play(); Cat’s play() Error Runtime error
d = (Dog) a; ok Error Runtime error
c = a; Error N/A Compiler error

CS61B Fall 2024

2B Raining Cats and Dogs

How might we fix the error in the line assigning c = a?

CS61B Fall 2024

2B Raining Cats and Dogs

How might we fix the error in the line assigning c = a?

● We could fix this error by casting a to be a Cat: c = (Cat) a;

● This would be a valid cast, as the compiler agrees that a variable of static type
Animal could potentially hold a Cat, and so our request is feasible.

