
Argo Workflows
Contributors Workshop

Yuan Tang (@terrytangyuan)
Founding Engineer at Akuity & Project Lead of Argo Workflows

https://github.com/terrytangyuan/

Agenda

● Architecture overview
● Individual components

○ Controller, operator, workflow pods
○ Server
○ CLI, SDKs

● Hands-on experiments and understanding
different components

● Codebase key files walkthrough

Architecture Overview

https://argoproj.github.io/argo-workfl
ows/assets/diagram.png

https://argoproj.github.io/argo-workflows/assets/diagram.png
https://argoproj.github.io/argo-workflows/assets/diagram.png

Controller

Runs reconciliation loops for workflows and other relevant resources.

Controller

Controller includes K8s informers that watches:
● Workflow, WorkflowTemplate, ClusterWorkflowTemplate
● CronWorkflow: manages lifecycle of CronWorkflow and associated workflows.
● WorkflowTaskSet, WorkflowTaskResult: manages communication between

workflow pods and controller.
● WorkflowArtifactGCTask: manages tasks that performs GC on artifacts based

on artifactGC strategy.
● Pod: workflow pods lifecycle management.
● ConfigMap: for controller configuration, synchronization, memoization cache,

etc.

Controller

The controller also includes:
● synchronizationManager: retrieves configurations of

synchronization and manages mutex/semaphore locks for running
workflows.

● Various garbage collections:
○ Workflows: delete workflows and offloaded node statuses

based on specified periodicity and retention policy.
○ Archived workflows: based on specified TTL and periodicity.
○ Pods: based on PodGC strategy

● syncMetrics:
○ Workflow phases counter
○ Pod phases counter
○ Depth of work queues
○ Queue latency
○ Retry counter

Controller Operator

The controller takes each workflow and performs the following
operations:
● Executes individual templates
● Sets up artifact repository
● Initializes and manages synchronization lock
● Collects metrics related to the workflow
● Manages PodDisruptionBudget, PVCs
● Tracks the deadline of the workflow and watches suspend/resume

actions
● Configures parallelism for workflow pods
● GC on artifacts
● Execute lifecycle hooks
● Records K8s events

Workflow/Executor Pods

Workflow/Executor Pods

● main container: runs the image and command that the user specifies.
● init container: fetches artifacts and parameters and makes them

available to the main container.
● wait container: monitors the progress of the main container, performs

tasks that are needed for clean up, including saving output parameters
and artifacts, and communicating the result of the step back to the
controller.
○ Note that for resource templates, main container will act as the wait

container that waits for the status of the K8s resource.

Workflow Pod: Pod Annotations (old)

 workflows.argoproj.io/outputs
 workflows.argoproj.io/progress

● Pod patch permission is not allowed in some orgs
● Malicious code in main container to exploit this permission
● Version <= v3.3

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: executor
rules:
 - apiGroups:
 - ""

resources:
 - pods

verbs:
 - get
 - patch

Workflow Pod: WorkflowTaskResult (new)

● Communicate task’s result back to the controller
● Result includes: phase, message, outputs, progress
● Version >= 3.4

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: executor
rules:
 - apiGroups:
 - argoproj.io

resources:
 - workflowtaskresults

verbs:
 - create
 - patch

Lifecycle of WorkflowTaskResult

1. Workflow controller initializes the K8s informer that watches the
WorkflowTaskResult objects in the cluster.

2. Executor pod (wait container) creates a WorkflowTaskResult object in
K8s cluster for a node.

3. Wait container continuously watches the progress of the node and patches
the WorkflowTaskResult object periodically.

4. Controller’s informer watches updates on WorkflowTaskResult and
schedule the next steps based on the results/progress.

5. When workflow is completed, the relevant WorkflowTaskResults will be
deleted.

Agent Pods

● Execute lightweight HTTP requests/templates independent of the controller.

templates:
- name: http-template
 http:
 url: "http://openlibrary.org/people/george08/nofound.json"

● Each workflow will start one agent pod for executing all HTTP requests.
● Requires additional RBAC on WorkflowTaskSet CRD used for communication

between agent pod and controller.
● Agent pod starts a watch on WorkflowTaskSets CRs on any updates.

ContainerSet

● Execute multiple user-defined containers within a single executor pod.
● They will be scheduled on the same host.
● You can use cheap and fast empty-dir volumes to share data among

containers.
● Limited functionalities: only able to use simple depends logic.
 templates:
 - name: main
 containerSet:
 containers:
 - name: a
 image: argoproj/argosay:v2
 - name: b
 image: argoproj/argosay:v2
 dependencies: ["a"]
 - name: c
 image: argoproj/argosay:v2
 dependencies: ["a"]
 - name: d
 image: argoproj/argosay:v2
 dependencies: ["b", "c"]

Server

Provides the backend gRPC and RESTful services:
● Workflow server

○ Workflow operations: create, get, list, delete, retry, suspend, etc.
○ Create/update/patch/delete/list Workflow CRs in cluster and then

controller reconciles
● Archived workflow server

○ Archived workflows operations: get, list, delete, resubmit, etc.
○ Interacts with the database

● (Cluster) Workflow template server
○ Create, get, update, list WorkflowTemplate CRs

● Cron workflow server:
○ Create, get, list, delete, suspend, resume CronWorkflow CRs

Server

● Artifact server
○ Retrieves input/output artifacts for workflows to be used in the UI

Server

● Event, event source, and sensor server
○ create/get/list/update Argo Events resources

● Info server
○ Login info such as SSO claims and service account
○ UI configurations such as first time user prompt and feedback form

● Auth
○ Handles authentication such as SSO

CLI

● argo
○ get, create, delete, list, retry, stop, logs, watch ...
○ cron: get, create, delete, list, …
○ archive, cluster template, …
○ auth token
○ executor-plugin
○ …
○ Note: some requires a running argo-server

● server: starts the server
● workflow-controller: starts the controller
● argoexec: starts a workflow executor pod. Only use internally.

UI

● Consists of React components
● Wrapper services that send REST requests to Argo Server

UI: Services

export const WorkflowsService = {
 create(workflow: Workflow, namespace: string) {
 return requests
 .post(`api/v1/workflows/${namespace}`)
 .send({workflow})
 .then(res => res.body as Workflow);
 }

 get(namespace: string, name: string) {
 return requests

.get(`api/v1/workflows/${namespace}/${name}`)

.then(res => res.body as Workflow);
 }

 ...
}

UI: Components

export const WorkflowDetails = RouteComponentProps<any>) => {

const [namespace] = useState(match.params.namespace);
const [workflow, setWorkflow] = useState<Workflow>();

const renderSummaryTab = () => {...}

useEffect(() => {
 const retryWatch = new RetryWatch<Workflow>(
 watch: () => services.workflows.watch({name, namespace})

onError: err => { services.workflows.get(namespace, name) ...

...

return (
 <Page
 title={'Workflow Details'}
 toolbar=...

</Page>
);

}

SDKs

● Go (native)
● Python (generated by OpenAPI Generator)

○ Published to PyPI here
● Java (generated by OpenAPI Generator)

○ Published to GitHub Packages here

https://pypi.org/project/argo-workflows/
https://github.com/orgs/argoproj/packages?repo_name=argo-workflows

Dive into Components: Hands-on Experiments

https://github.com/terrytangyuan/contributor-workshop

https://github.com/terrytangyuan/contributor-workshop

Dive into Codebase: Key Files

Explore key files to different components and core
functionalities.

Thanks!
Questions?

