Machine Learning Journal Club Lecture 2

A journey into neural networks: from perceptrons to CNNs

MACHINE LEARNING REALLY MEANS WHAT

 Components of learning

 \Box *Input: x*

 X_{0}

 \Box *Output: y* **□** *Data:* $(x_1, y_1), (x_2, y_2), ... (x_N, y_N)$

M LV C

 \Box *Target:* $f: X \rightarrow Y$ \Box *Hypothesis:* $g: X$

A Simple learning model - the perceptron

 \Box Let X=R^d be the input space, so $x = (x_1, \ldots, x_d)$ \Box *Let Y= {+1,-1} be the output space (binary decision)*

A Simple learning model - the perceptron

x

2

2d - perceptron

 $h(x) = sign(w^T x)$

 $h(x) = sign(\sum w_i x_i)$

Perceptron Learning Algorithm (PLA)

x $\frac{1}{x}$

w + yx x

y= +1

y= -1

w + yx

 \Box *Given the training set* : $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$

➢*Pick a misclassified point*

 $sign(w^T x_n) \neq y_n$

➢*update the weight vector*

 $w \leftarrow w + x_n y_n$

Iterations of PLA

 \Box *Call w(t) the current weight vector at iteration t, t=0,1,2…*

 Pick a currently misclassified example \Box *(x(t),y(t)) and update weights:* $w(t+1) = w(t) + y(t)x(t)$

 \Box *The iteration goes on untill there are no more misclassified points!*

The Multy-layer perceptron (MLP)

 Take a look to the figure below: \Box $sign(w^T)$ *The target function cannot be written as*

1

x

2

Neural Networks

MING

Layer l-1 Layer l

 $x_i^{(l-1)}$: output node *i*, related to layer *l-1* $W_{ij}^{(l)}$: elements of weights matrix that goes from i to j_{\uparrow} *: Signal transferred to node j* $\theta(s_i^l)$: Activation function for every signal s_j

 $w_{ii}^{(l)}$

 $S_i^{(l)}$

Activation Functions

The choice of the activation function is arbitrary:

- \Box *Hard Threshold:*
	- $\theta(s) = sign(s)$
- \Box *Soft Threshold*

 $h(s)=\frac{e^{s}-e^{-s}}{e^{s}+e^{-s}}$

Forward propagation

 \Box *In order to compute h(x) we use the forward propagation algorithm*

❏*We have already seen that*

$$
\hat{\mathcal{C}} = \frac{1}{\theta(s^{(l)})} \text{ and}
$$

$$
\mathbf{S}^{(l)} = (W^{(l)})^T \mathbf{x}^{(l-1)}
$$

❏*So we initialize the input layer to* \mathbf{x}^{θ} \neq *x and compute:*

$$
x = x^{(0)} \xrightarrow{W'} s^{(1)} \xrightarrow{\theta} x^{(1)} \xrightarrow{W'} \dots \xrightarrow{} s^{(k)} \xrightarrow{\theta} x^{(L)} = h(x)
$$

The Error function

❏ *The training is made when we update the weight vector w , minimizing the error function*.

 \Box We define e_n depending on the problem :

 \triangleright $e_n(w)=||h(x_n)\neq y_n||$ Classification

 $\frac{1}{\sqrt{E_{in} + \frac{1}{N}}}\sum_{i=1}^N e_i$

 $\triangleright e_n(w) = (h(x_n) - y_n)^2$

Other problems

 \Box *How can we minimize* $E_{in}(w)$?

Gradient descent:

$$
w(t+1)=w(t)-\sqrt{\eta}\nabla E_{in}(w(t))
$$

 $w = [W^1, W^2, \dots W^L]$ *with*

 \Box *So we need the* $E_{in}(w)$ *derivative respect to each weight matrix:*

$$
\frac{\partial E_{in}}{\partial W^{(l)}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial e_n}{\partial W^{(l)}}
$$

Back Propagation

 $\partial e_n(w)$

 $\overline{\left \vert \partial x_{i}^{(l)}\right \rangle }$

 $d^{(H)}$

 $\frac{\partial \delta^{(l+1)}_k}{\partial x_j^{(l)}} \cdot \frac{\partial e_n(\psi)}{\partial s_k^{(l+1)}} = \sum_{k=1}^{d^{(h)}} w_{jk}^{(l+1)} \delta_k^{(l+1)} \left/ \frac{\partial e_n^{(l)}}{\partial x_j^{(l)}} \right.$

❏ Let define the **sensitivity**:

$$
\delta_j^{(l)} = \frac{\partial e_n(w)}{\partial s_j^{(l)}} = \left(\frac{\partial e_n(w)}{\partial x_j^{(l)}}\right) \frac{\partial x_j^{(l)}}{\partial s_j^{(l)}}
$$

$$
\delta_j^{(l)} = \Theta'(s_j^{(l)}) \sum_{k=1}^{d^{(l+1)}} w_{jk}^{(l+1)} \delta_k^{(l+1)}
$$

Back Propagation Algorithm

❏*Training can be achieved since:*

$$
\delta^{(L)} = \frac{\partial e}{\partial s^{(L)}} = 2(x^{(L)} - y) \frac{\partial x^{(L)}}{\partial s^{(L)}} = 2(x^{(L)} - y) \theta'(s^{(L)})
$$

 \Box *In this way we can evaluate all the sensitivities:*

 $\delta^{(1)} \leftarrow \delta^{(2)} \leftarrow \ldots \leftarrow \delta^{(L)}$

So we can compute:

 $\frac{\partial e}{\partial w_{ij}^{(l)}} = \frac{\partial s_j^{(l)}}{\partial w_{ij}^{(l)}} \frac{\partial e}{\partial s_j^{(l)}} = x_i^{(l-1)} \delta_j^{(l)}$

 $G^{(t)}(x_n) = \frac{\partial e_n}{\partial W^{(t)}} = [x^{(l-1)}(\delta^{(l)})]$

Summary

Forward propagation back propagation

Back Propagation Algorithm

Algorithm to Compute $E_{\text{in}}(w)$ and $g = \nabla E_{\text{in}}(w)$. **Input:** $w = \{W^{(1)}, \ldots, W^{(L)}\}; \mathcal{D} = (x_1, y_1) \ldots (x_N, y_n).$ **Output:** error $E_{\text{in}}(\mathbf{w})$ and gradient $\mathbf{g} = \{G^{(1)}, \ldots, G^{(L)}\}.$ 1: Initialize: $E_{\text{in}} = 0$ and $G^{(\ell)} = 0 \cdot W^{(\ell)}$ for $\ell = 1, \ldots, L$. 2: for Each data point (x_n, y_n) , $n = 1, ..., N$, do Compute $x^{(\ell)}$ for $\ell = 0, ..., L$. [forward propagation] $3:$ Compute $\delta^{(\ell)}$ for $\ell = L, \ldots, 1$. [backpropagation] $4:$ $E_{\text{in}} \leftarrow E_{\text{in}} + \frac{1}{N} (\mathbf{x}^{(L)} - y_n)^2$. $5:$ for $\ell = 1, \ldots, L$ do $6:$ $G^{(\ell)}(x_n) = [x^{(\ell-1)}(\delta^{(\ell)})^T]$ $7:$ $G^{(\ell)} \leftarrow G^{(\ell)} + \frac{1}{N} G^{(\ell)}(x_n)$ $8:$