
HTCondor Tutorial - Utrecht

Schedule
12:30 Lunch

13:00 Part I
● [15 min] Placing lists of jobs
● [20 min] What happened to my job?
● [15 min] Data placement
● [30 min] Troubleshooting strategies
● [20 min] GPU jobs

14:40 Break

14:50 Part II
● [40 min] Principles of DAGMan
● [40 min] Hands-on: DAGMan
● [20 min] Python bindings
● [20 min] Hands-on Python bindings
● [10 min] Computing at Nikhef
● [25 min] Philosophy & architecture

17:25 Social
1

https://docs.google.com/presentation/d/1yTH_7Rha_Y7fAaQIuYllvtL7PH-ImSgE6uxpEWMHjKA/edit?usp=drive_link
https://docs.google.com/presentation/d/1vYHMashxAM-AwewbF6Rmqr1J9zw5xJfOVAdAO4X_bXo/edit?usp=drive_link
https://docs.google.com/presentation/d/1pu1yJ_iwh-M84mDv_Aix0Vao006Qu2PBZX7xkql_jw8/edit?usp=drive_link
https://docs.google.com/presentation/d/18JdNMJvqXPDUg55rEphPAc9mqp6QDQCQN1BZbKlJACQ/edit?usp=drive_link
https://docs.google.com/presentation/d/1I1VdxH3ADpUJGNDLseNNRvJxCBe2FRxm-xdG_sNhd4c/edit?usp=drive_link
https://docs.google.com/presentation/d/1G6c2sdYnpfyAV4aLRJvORqVxGMBwX0LXXYe3hTJgbvY/edit?usp=drive_link
https://docs.google.com/presentation/d/1fjz48BDpJpm31gOghGpVwsRe9z1BgGlEYKPLhpsVFGU/edit?usp=drive_link
https://docs.google.com/presentation/d/1G8QZKDgozxk80DPl-VZ7jkXL9LI-P81usMqwikbnJN4/edit?usp=drive_link

HTCondor Tutorial - Utrecht

Principles of DAGMan

2

HTCondor Tutorial - Utrecht

Scenario

You have two jobs to run: job A and job B.

You have two corresponding template submit files: A.sub and B.sub

You want job B to run only after job A has completed successfully

● To determine success, need to check the output of job A

A
(A.sub)

B
(B.sub)

B
is dependent on

A
3

continue only if
successful

HTCondor Tutorial - Utrecht

How?

HTCondor offers you the services of the

Directed Acyclic Graph Manager → DAGMan
to automate the submission of jobs (with dependencies)

4

HTCondor Tutorial - Utrecht

The Directed Acyclic Graph Manager (DAGMan) manages the
placement of lists of jobs represented by “nodes” that are

connected by “edges”

How?

A
(A.sub)

B
(B.sub)

B
is dependent on

A

5

continue only if
successfulnode node

edge

HTCondor Tutorial - Utrecht

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

my-first.dag

6

HTCondor Tutorial - Utrecht

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub
JOB B B.sub

my-first.dag

Syntax

JOB <node_name> <submit_file_name>

7

HTCondor Tutorial - Utrecht

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub
JOB B B.sub

my-first.dag

Syntax

JOB <node_name> <submit_file_name>

A single template
submit file can queue a

list of jobs*
8*if 1 job fails, then the whole list is removed from the queue

HTCondor Tutorial - Utrecht

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub
JOB B B.sub

PARENT A CHILD B

my-first.dag

Syntax

 PARENT <node_name> CHILD <node_name>

depends on

9

HTCondor Tutorial - Utrecht

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub
JOB B B.sub

PARENT A CHILD B

my-first.dag

10

HTCondor Tutorial - Utrecht

Create the DAG input file

How can we tell if job A completed successfully?

● To determine success, need to check the output of job A using A-check.sh

JOB A A.sub
JOB B B.sub

PARENT A CHILD B

my-first.dag

11

HTCondor Tutorial - Utrecht

Create the DAG input file

How can we tell if job A completed successfully?

● To determine success, need to check the output of job A using A-check.sh

JOB A A.sub
SCRIPT POST A A-check.sh
JOB B B.sub

PARENT A CHILD B

my-first.dag

Syntax

 SCRIPT POST <node_name> <script_name>

*order of lines does not actually matter

12

HTCondor Tutorial - Utrecht

How can we tell if job A completed successfully?

● To determine success, need to check the output of job A using A-check.sh

A
(A.sub)

B
(B.sub)

successful only if
A-check.sh is successful

13

Create the DAG input file

continue only if
successful

HTCondor Tutorial - Utrecht

Submitting and Monitoring the DAG

14

HTCondor Tutorial - Utrecht

By default, DAGMan expects the submit files A.sub and B.sub are in the same
directory as my-first.dag, along with A-check.sh, on an HTCondor Access Point

Submit the DAG

DAG_simple/

|-- my-first.dag

|-- A.sub

|-- A-check.sh

|-- B.sub

Basic Working Directory

15

HTCondor Tutorial - Utrecht

Submit the DAG

By default, DAGMan expects the submit files A.sub and B.sub are in the same
directory as my-first.dag, along with A-check.sh, on an HTCondor Access Point

DAG_simple/

|-- my-first.dag

|-- A.sub

|-- A-check.sh

|-- B.sub

Basic Working Directory

It is possible to
create other

directory structures,
but for now we will
use this simple, flat

organization.

16

HTCondor Tutorial - Utrecht

Submit the DAG

Command to submit, or place, the DAGMan job:

This then starts the DAG node scheduler job, which we can see in the queue:

 condor_submit_dag <dag_description_file>

 condor_submit_dag my-first.dag

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

17

HTCondor Tutorial - Utrecht

Monitor the DAG

This then starts the DAG node scheduler job, which we can see in the queue:

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

BATCH_NAME for the DAGMan job is the name of the input description file,
my-first.dag, plus the Job ID of the scheduler job (562265)

18

HTCondor Tutorial - Utrecht

Monitor the DAG

This then starts the DAG node scheduler job, which we can see in the queue:

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

The total number of jobs for my-first.dag+562265 corresponds to the
total number of nodes in the DAG (2)

19

HTCondor Tutorial - Utrecht

Monitor the DAG

This then starts the DAG node scheduler job, which we can see in the queue:

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

Only 1 node is listed as "Idle", meaning that DAGMan has only
materialized 1 job so far. This is consistent with the fact that node A has to
complete before DAGMan can submit the job for node B.

20

HTCondor Tutorial - Utrecht

Monitor the DAG
For more detailed monitoring:

[user@ap40 DAG_simple]$ condor_q -dag -nob

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 12/14/23 11:27:03
 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
562265.0 user 09/01 11:26 0+00:00:37 R 0 0.5 condor_dagman
562279.0 |-A 09/01 11:26 0+00:00:00 I 0 0.0 A.sh

First entry: dag node scheduler job created upon submission

21

HTCondor Tutorial - Utrecht

Monitor the DAG
For more detailed monitoring:

[user@ap40 DAG_simple]$ condor_q -dag -nob

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 12/14/23 11:27:03
 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
562265.0 user 09/01 11:26 0+00:00:37 R 0 0.5 condor_dagman
562279.0 |-A 09/01 11:26 0+00:00:00 I 0 0.0 A.sh

Additional entries: correspond to nodes whose jobs are currently in the
queue.

● Reminder: Nodes that have not yet been submitted by DAGMan or that
have completed and thus left the queue will not show up in condor_q
output.

22

HTCondor Tutorial - Utrecht

Additional Tools to Monitor your Workflow

DAGMan will produce helpful files to learn about and troubleshoot your
workflow.

[user@ap40 DAG_simple]$ condor_submit_dag my-first.dag

File for submitting this DAG to HTCondor : my-first.dag.condor.sub
Log of DAGMan debugging messages : my-first.dag.dagman.out
Log of HTCondor library output : my-first.dag.lib.out
Log of HTCondor library error messages : my-first.dag.lib.err
Log of the life of condor_dagman itself : my-first.dag.dagman.log

Submitting job(s).
1 job(s) submitted to cluster 562265.

23

HTCondor Tutorial - Utrecht 24

JOB A A.sub
SCRIPT POST A A-check.sh
JOB B B.sub

PARENT A CHILD B

my-first.dag

condor_submit_dag
1. DAG node scheduler job starts
2. A.sub executes → completes
3. A-check.sh execute → completes
4. B.sub executes → completes
5. DAG node scheduler job completes

Overview of process

HTCondor Tutorial - Utrecht

• All DAGMan PRE/POST scripts run on the Access Point and not on an
Execution Point Slot.

• Scripts provide a way to perform tasks at key points in a node’s lifetime.
○ E.g., checking if files exist, creating directories, consolidating files

• Should be lightweight (low computational) programs/tasks

PRE Script

JOB

POST Script

Node

DAGMan Node Scripts Documentation 25

PRE/POST scripts

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-scripts.html

HTCondor Tutorial - Utrecht 26

JOB A A.sub
SCRIPT POST A A-check.sh
JOB B B.sub

PARENT A CHILD B

my-first.dag

1. condor_submit_dag
2. DAG node scheduler job starts
3. A.sub executes → completes
4. check-A.sh execute → completes
5. B.sub executes → completes
6. DAG node scheduler job completes

Throughout this workflow, DAGMan is
monitoring for failures/successes

Overview of process

HTCondor Tutorial - Utrecht

What is Considered a Failure

● A non-zero exit code in the PRE script, JOB, or POST script is considered
a failure

● DAGMan will continue running work until can no longer progress

PRE Script

JOB

POST Script

Node

27

HTCondor Tutorial - Utrecht

Overall
DAGMan will do as much work as it can until

completion (“success”) or failure

28

HTCondor Tutorial - Utrecht

● Once a node has failed and no more progress in the DAG can be made,
DAGMan will produce a rescue file and exit.
○ Rescue file is named <dag_description_file>.rescue001

■ “001” increments for each new rescue file
○ Records which NODEs have completed successfully

■ does not contain the actual DAG structure

Rescue DAGs Documentation
29

A.sub B.sub check-A.sh
my-first.dag my.-first.dag.condor.sub my.dag.dagman.log
my-first.dag.dagman.out my-first.dag.lib.err my-first.dag.lib.out
my-first.dag.metrics my-first.dag.nodes.logmy-first.dag.rescue001
(other job files)

DAG_simple/

A Failed DAG

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-resubmit-failed.html#the-rescue-dag

HTCondor Tutorial - Utrecht

● Search for issue in <dag filename>.dagman.out and job standard
error/output files

● Once issue is fixed, resubmit with condor_submit_dag
○ Rescue file will be automatically detected and progress will resume from

the point it left off

Rescue DAGs Documentation
30

Dealing with a Failed DAG

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-resubmit-failed.html#the-rescue-dag

HTCondor Tutorial - Utrecht

Many DAGs

31

HTCondor Tutorial - Utrecht

Many DAGs

Scenario: Now you have to run the A→B workflow many times in parallel

How to accomplish?

32

A1 B1

A2 B2

AN BN

⋮

HTCondor Tutorial - Utrecht

Many DAGs … or One Big DAG

Write a script that generates your DAG description file* for you
(and the needed files)

33*for now. We are working to develop better of ways of handling this scenario.

JOB A A.sub
SCRIPT POST A A-check.sh
JOB B B.sub

PARENT A CHILD B

my-first.dag

HTCondor Tutorial - Utrecht

Many DAGs … or One Big DAG

Write a script that generates your DAG description file* for you
(and the needed files)

34*for now. We are working to develop better of ways of handling this scenario.

JOB A A.sub
SCRIPT POST A A-check.sh
JOB B B.sub

PARENT A CHILD B

my-first.dag

JOB A1 A1.sub
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A2.sub
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

python
bash

…

HTCondor Tutorial - Utrecht

One Big DAG

Once ready, do a single condor_submit_dag
command

The DAG node scheduler job will manage all of the
submissions while keeping track of the
dependencies

35

JOB A1 A1.sub
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A2.sub
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

HTCondor Tutorial - Utrecht

One Big DAG - What If There Is a Failure?

Let's say that A1 job finishes and A-check.sh finds
that the output of A1 is incorrect, and that A1 has
failed. What happens?

36

A1 B1

A2 B2

AN BN

⋮

X

? ?

?

? ?

X = Failed
? = Not known yet

HTCondor Tutorial - Utrecht

One Big DAG - What If There Is a Failure?

Let's say that A1 job finishes and A-check.sh finds
that the output of A1 is incorrect, and that A1 has
failed. What happens?

● DAGMan does as much work as it can, then
creates a Rescue DAG.

● While B1 won't be started, the DAG node
scheduler will keep submitting and managing the
other AN & BN jobs until there is no more work.

37

A1 B1

A2 B2

AN BN

⋮

X

S ?

Ø

S ?

S = Submitted
X = Failed
Ø = Will not be submitted
? = Not known yet

HTCondor Tutorial - Utrecht

One Big DAG - What If There Is a Failure?

Let's say that A1 job finishes and A-check.sh finds that
the output of A1 is incorrect, and that A1 has failed.
What happens?

● The Rescue DAG is used automatically the
next time you run condor_submit_dag, and
the DAG node scheduler job will only submit
the unsuccessful nodes.

○ If all but A1→B1 completed successfully, then when the
Rescue DAG is submitted, only the A1→B1 will be
attempted.

38

A1 B1

A2 B2

AN BN

⋮

S

✔ ✔

?

✔ ✔

S = Submitted
? = Not known yet
✔= Successful completion

HTCondor Tutorial - Utrecht

An Aside: Reuse files in your DAG

In the input description file with many
DAGs, there were a lot of similar files:
A{x}.sub, A{x}-check.sh, B{x}.sub

39

JOB A1 A1.sub
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A2.sub
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

HTCondor Tutorial - Utrecht

An Aside: Reuse files in your DAG

In the big DAG, there were a lot of similar
files: A{x}.sub, A{x}-check.sh, B{x}.sub

Instead of A1.sub, A2.sub, … AN.sub, can
use A.sub

40

JOB A1 A.sub
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A.sub
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

HTCondor Tutorial - Utrecht

An Aside: Reuse files in your DAG

In the big DAG, there were a lot of similar
files: A{x}.sub, A{x}-check.sh, B{x}.sub

Instead of A1.sub, A2.sub, … AN.sub, can
use A.sub

Then pass the number to the submit file
with the VARS command

41

JOB A1 A.sub
VARS A1 number=1
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A.sub
VARS A2 number=2
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

HTCondor Tutorial - Utrecht

An Aside: Reuse files in your DAG

In the big DAG, there were a lot of similar
files: A{x}.sub, A{x}-check.sh, B{x}.sub

Instead of A1.sub, A2.sub, … AN.sub, can
use A.sub

Then pass the number to the submit file
with the VARS command

42

JOB A1 A.sub
VARS A1 number=1
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A.sub
VARS A2 number=2
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

DAG Description File Syntax
VARS <node_name> <variable>=<value>

Submit File Syntax
arguments = $(<variable>)

HTCondor Tutorial - Utrecht

An Aside: Reuse files in your DAG

In the big DAG, there were a lot of similar
files: A{x}.sub, A{x}-check.sh, B{x}.sub

Instead of A1.sub, A2.sub, … AN.sub, can
use A.sub

Then pass the number to the submit file
with the VARS command

Can repeat for B.sub

43

JOB A1 A.sub
VARS A1 number=1
SCRIPT POST A1 A1-check.sh
JOB B1 B.sub
VARS B1 number=1
PARENT A1 CHILD B1

JOB A2 A.sub
VARS A2 number=2
SCRIPT POST A2 A2-check.sh
JOB B2 B.sub
VARS B1 number=2
PARENT A2 CHILD B2

⋮

my-big.dag

*can achieve similar outcome for A-check.sh
(not using VARS though)

HTCondor Tutorial - Utrecht

Learn More

DAGMan Resources

● Beginner DAGMan Resources:
○ https://www.youtube.com/watch?v=OuIBf6x24r0&pp=ygUGZGFnbWFu
○ https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-workflows/
○ https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-simple-exampl

e/
● Intermediate DAGMan Resources:

○ https://portal.osg-htc.org/documentation/support_and_training/training/osgusertraining/
○ https://github.com/OSGConnect/tutorial-dagman-intermediate

● DAGMan Core Documentation
○ https://htcondor.readthedocs.io/en/latest/automated-workflows/index.html

44

https://www.youtube.com/watch?v=OuIBf6x24r0&pp=ygUGZGFnbWFu
https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-workflows/
https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-simple-example/
https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-simple-example/
https://portal.osg-htc.org/documentation/support_and_training/training/osgusertraining/
https://github.com/OSGConnect/tutorial-dagman-intermediate
https://htcondor.readthedocs.io/en/latest/automated-workflows/index.html

HTCondor Tutorial - Utrecht

Questions?

45

HTCondor Tutorial - Utrecht

Schedule
12:30 Lunch

13:00 Part I
● [15 min] Placing lists of jobs
● [20 min] What happened to my job?
● [15 min] Data placement
● [30 min] Troubleshooting strategies
● [20 min] GPU jobs

14:40 Break

14:50 Part II
● [40 min] Principles of DAGMan
● [40 min] Hands-on: DAGMan
● [20 min] Python bindings
● [20 min] Hands-on Python bindings
● [10 min] Computing at Nikhef
● [25 min] Philosophy & architecture

17:25 Social
46

https://docs.google.com/presentation/d/1yTH_7Rha_Y7fAaQIuYllvtL7PH-ImSgE6uxpEWMHjKA/edit?usp=drive_link
https://docs.google.com/presentation/d/1vYHMashxAM-AwewbF6Rmqr1J9zw5xJfOVAdAO4X_bXo/edit?usp=drive_link
https://docs.google.com/presentation/d/1pu1yJ_iwh-M84mDv_Aix0Vao006Qu2PBZX7xkql_jw8/edit?usp=drive_link
https://docs.google.com/presentation/d/18JdNMJvqXPDUg55rEphPAc9mqp6QDQCQN1BZbKlJACQ/edit?usp=drive_link
https://docs.google.com/presentation/d/1I1VdxH3ADpUJGNDLseNNRvJxCBe2FRxm-xdG_sNhd4c/edit?usp=drive_link
https://docs.google.com/presentation/d/1G6c2sdYnpfyAV4aLRJvORqVxGMBwX0LXXYe3hTJgbvY/edit?usp=drive_link
https://docs.google.com/presentation/d/1fjz48BDpJpm31gOghGpVwsRe9z1BgGlEYKPLhpsVFGU/edit?usp=drive_link
https://docs.google.com/presentation/d/1G8QZKDgozxk80DPl-VZ7jkXL9LI-P81usMqwikbnJN4/edit?usp=drive_link

