
Notation3 as the rule language
for the Semantic Web

Dörthe Arndt, March 2019

There is a need for rules in the semantic Web
8. Lack of a standard rules language. This is a big one. Inference is fundamental to the value
proposition of RDF, and almost every application needs to perform some kind of application-specific
inference. ("Inference" is used broadly herein to mean any rule or procedure that produces new
assertions from existing assertions -- not just conventional inference engines or rules languages.)
But paradoxically, we still do not have a *standard* RDF rules language. (See also Sean Palmer's
apt observations about N3 rules.[14]) Furthermore, applications often need to perform custom
"inferences" (or data transformations) that are not convenient to express in available (non-standard)
rules languages, such as RDF data transformations that are needed when merging data from
independently developed sources having different data models and vocabularies. And merging
independently developed data is the *most* fundamental use case of the Semantic Web.

One possibility for addressing this need might be to embed RDF in a full-fledged programming
language, so that complex inference rules can be expressed using the full power and convenience of
that programming language. Another possibility might be to provide a convenient, standard way to
bind custom inference rules to functions defined in a programming language. A third possibility might
be to standardize a sufficiently powerful rules language.

However, see also some excellent cautionary comments from Jesus Barras(Neo4J) and MarkLogic
on inference: "No one likes rules engines --> horrible to debug / performance . . . Reasoning with
ontology languages quickly gets intractable/undecidable" and "Inference is expensive. When
considering it, you should: 1) run it over as small a dataset as possible 2) use only the rules you
need 3) consider alternatives."[15]

2

On the Semantic Web mailing
list there was recently a

discussion about improving
RDF.

One important point was the
lack of a standard rule

language.

Connection to RDF

The Semantic Web Rule language needs to have a
strong connection to RDF.

3

Notation3 Logic

Notation3 Logic is an extension of RDF.

All RDF triples are also valid in N3

:lisa :isDaughterOf :homer.

4

Rules

Rules are written using RDF turtle, a graph notation {}
and an implication arrow =>:

{?x :isDaughterOf ?y. ?z :isSonOf ?y}

=>{?x :hasBrother ?z}.

“If x is the daughter of y and z is the son of y, then z is the brother of x.”

5

Application of rules
Rules can be applied to RDF triples:

:lisa :isDaughterOf :homer. :bart :isSonOf :homer.

{?x :isDaughterOf ?y. ?z :isSonOf ?y} =>{?x :hasBrother ?z}.

6

:lisa :hasBrother :bart.

Example: list:member

:bob :favouriteFood (:ice-cream :spaghetti :hamburgers).

{?p :favouriteFood ?list. ?list list:member ?m}=>{?p :likes ?m}.

Built-in functions can be used to operate on triples

7

:bob :likes :ice-cream.
:bob :likes :spaghetti.
:bob :likes :hamburgers.

(...)

Built-in functions

Which built-in functions do we need?

8

Forward vs. backward
In N3 it is allowed to write rules either in a foward way or in a backward way. Reasoners
could use that as an indication to either do forward or backward reasoning.

Forwards

{?x :isDaughterOf ?y. ?z :isSonOf ?y}=>{?x :hasBrother ?z}.

Backwards:
{?x :hasBrother ?z}<={?x :isDaughterOf ?y. ?z :isSonOf ?y}.

With backward reasoning rules we can do logical programming (e.g. like Prolog).

9

Citation of graphs

N3 Logic allows the citation of graphs

:lisa :says {:bob :likes :ice-cream}.

“Lisa says that Bob likes ice-cream.”

10

Lists are first-class citizens
:bob :favouriteFood (:ice-cream :spaghetti :hamburgers).

is different from

 :bob :favouriteFood _:b1 rdf:first :ice-cream .
_:b1 rdf:rest _:b2 .

_:b2 rdf:first :spaghetti .

_:b2 rdf:rest _:b3 .

_:b3 rdf:first :hamburgers .

_:b3 rdf:rest rdf:nil .

11

Blank nodes and literals in all positions of a triple

“ABC” a :Literal.

:lisa _:x :bart.

Both triples are valid N3.

12

