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LECTURE 11
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Plan for next few lectures: Modeling

Modeling I:
Intro to Modeling, Simple 
Linear Regression

Question & 
Problem

Formulation

Data 
Acquisition

Exploratory 
Data Analysis

Prediction and
Inference

Reports, Decisions, 
and Solutions

?

Modeling II:
Different models, loss 
functions, linearization

Modeling III:
Multiple Linear 
Regression

(today)



Linear in Theta
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An expression is “linear in theta” if it is a linear combination of parameters         .

🤔

1. 

2.

3.

4. 

5.

Which of the following 
expressions are linear 
in theta?



1. 

2.

3.

Linear in Theta
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An expression is “linear in theta” if it is a linear combination of parameters         .

4. 

5.

“Linear in theta” means the expression 
can separate into a matrix product of two 
terms: a vector of thetas, and a 
matrix/vector not involving thetas.



Define the multiple linear regression model:

   . 

Multiple Linear Regression

5

single observation
(p features)

single
prediction

Predicted 
value of

This is a linear model because it is
a linear combination of parameters   .



NBA 2018-2019 Dataset

How many points does an athlete score per game?
PTS (average points/game)
To name a few factors:
● FG: average # 2 point field goals
● AST: average # of assists
● 3PA: average # 3 point field goals attempted
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3PA
assist: a pass to a teammate 

that directly leads to a goal

Rows correspond to 
individual players.

FG



Multiple Linear Regression Model

How many points does an athlete score per game?
PTS (average points/game)
To name a few factors:
● FG: average # 2 point field goals
● AST: average # of assists
● 3PA: average # 3 point field goals attempted

7

3PA
assist: a pass to a teammate 

that directly leads to a goal

Rows correspond to 
individual players.

0.4
0.8
1.5

FG

FG AST 3PA
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Today’s Roadmap
Lecture 11, Data 100 Fall 2022

Linear Algebra Resources: Ed post 

OLS Problem Formulation
● Multiple Linear Regression Model
● Mean Squared Error

Geometric Derivation
● Lin Alg Review: Orthogonality, Span
● Least Squares Estimate Proof

Performance: Residuals, Multiple R2

OLS Properties
● Residuals
● The Intercept Term
● Existence of a Unique Solution

https://edstem.org/us/courses/15436/discussion/1160473


Today’s Goal: Ordinary Least Squares

9

2. Choose a loss 
function

3. Fit the model

4. Evaluate model 
performance

1. Choose a model

L2 Loss

Mean Squared Error 
(MSE)

Minimize
average loss
with calculus geometry

Multiple Linear 
Regression

Visualize, 
Root MSE 
Multiple R2

The solution to OLS are the minimizing 
parameters      , also called the
least squares estimate.

In statistics, this model + loss is called
ordinary least squares (OLS).
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Multiple Linear 
Regression Model
Lecture 11, Data 100 Fall 2022

OLS Problem Formulation
● Multiple Linear Regression Model
● Mean Squared Error

Geometric Derivation
● Review: Orthogonality, Span
● Least Squares Estimate Proof

Performance: Residuals, Multiple R2

OLS Properties
● Residuals
● The Intercept Term
● Existence of a Unique Solution

Linear Algebra Resources: Ed post 

https://edstem.org/us/courses/15436/discussion/1160473


Today’s Goal: Ordinary Least Squares
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2. Choose a loss 
function

3. Fit the model

4. Evaluate model 
performance

1. Choose a model

L2 Loss

Mean Squared Error 
(MSE)

Minimize
average loss
with calculus geometry

Multiple Linear 
Regression

Visualize, 
Root MSE 
Multiple R2

For each of our n datapoints:

Linear Algebra!!



Vector Notation
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Rows correspond to 
individual players.

NBA Data

1 0.4 0.8 1.5

1
0.4
0.8
1.5



Matrix Notation

To make predictions on all     datapoints in our sample: 
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Datapoint 1where

Datapoint nwhere

Datapoint 2where

… … …

Data

same

for all 
preds



Matrix Notation
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… …

n row vectors, each
with dimension (p+1)

…
Expand out each datapoint’s 
(transposed) input

To make predictions on all     datapoints in our sample: 

Data

same

for all 
preds
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…

n row vectors, each
with dimension (p+1)

Vectorize predictions and parameters 
to encapsulate all n equations into a 
single matrix equation.

Matrix Notation

To make predictions on all     datapoints in our sample: 

Data

same

for all 
preds
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Design matrix with
dimensions n x (p + 1)

…

Matrix Notation

To make predictions on all     datapoints in our sample: 

Data

same

for all 
preds



Example design matrix 
708 rows x (3+1) cols

Field Goals

Ass
ist

s

3-Point

    
Atte

mpts

The Design Matrix 

We can use linear algebra to represent our 
predictions of all      datapoints at once.
One step in this process is to stack all of our 
input features together into a design matrix:
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What do the rows and columns 
of the design matrix represent in 
terms of the observed data? 🤔



We can use linear algebra to represent our 
predictions of all      datapoints at once.
One step in this process is to stack all of our 
input features together into a design matrix:

The Design Matrix 
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A row corresponds to one 
observation, e.g., all (p+1) 
features for datapoint 3

A column corresponds to a feature, 
e.g. feature 1 for all n data points

Special all-ones feature often 
called the intercept

Example design matrix 
708 rows x (3+1) cols

Field Goals

Ass
ist

s

3-Point

    
Atte

mpts



The Multiple Linear Regression Model using Matrix Notation

We can express our linear model on our entire dataset as follows:
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Design matrixPrediction vector Parameter vector

Note that our 
true output is 
also a vector:
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Mean Squared 
Error
Lecture 11, Data 100 Fall 2022

OLS Problem Formulation
● Multiple Linear Regression Model
● Mean Squared Error

Geometric Derivation
● Lin Alg Review: Orthogonality, Span
● Least Squares Estimate Proof

Performance: Residuals, Multiple R2

OLS Properties
● Residuals
● The Intercept Term
● Existence of a Unique Solution

Linear Algebra Resources: Ed post 

https://edstem.org/us/courses/15436/discussion/1160473


Today’s Goal: Ordinary Least Squares
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2. Choose a loss 
function

3. Fit the model

4. Evaluate model 
performance

1. Choose a model

L2 Loss

Mean Squared Error 
(MSE)

Minimize
average loss
with calculus geometry

Multiple Linear 
Regression

Visualize, 
Root MSE 
Multiple R2

✅

More Linear Algebra!!



[Linear Algebra] Vector Norms and the L2 Vector Norm

The norm of a vector is some measure of that vector’s size.

● The two norms we need to know for Data 100 are the L1 and L2 norms (sound familiar?).
● Today, we focus on L2 norm. We’ll define the L1 norm another day.
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For the n-dimensional vector    , the L2 vector norm is



[Linear Algebra] The L2 Norm Is a Measure of Distance

The L2 vector norm is a generalization of the Pythagorean theorem into n dimensions.
It can therefore be used as a measure of distance between two vectors.
● For n-dimensional vectors , their distance is                           .
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Looks like Mean 
Squared Error!!

Note: The square of the L2 norm of a vector is
the sum of the squares of the vector’s elements:



Mean Squared Error with L2 Norms

We can rewrite mean squared error as a squared L2 norm: 
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With our linear model                  :



Ordinary Least Squares

The least squares estimate     is the parameter that minimizes the objective function          :
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A. Minimize the mean squared error for the linear model
B. Minimize the distance
     between true and predicted values      and  

C. Minimize the length of the residual vector,

D. All of the above
E. Something else

How should we interpret the OLS problem?

🤔



Ordinary Least Squares

The least squares estimate     is the parameter that minimizes the objective function          :
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A. Minimize the mean squared error for the linear model
B. Minimize the distance
     between true and predicted values      and  

C. Minimize the length of the residual vector,

D. All of the above
E. Something else

How should we interpret the OLS problem?

Important 
for today
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Geometric 
Derivation
Lecture 11, Data 100 Fall 2022

OLS Problem Formulation
● Multiple Linear Regression Model
● Mean Squared Error

Geometric Derivation
● Lin Alg Review: Orthogonality, Span
● Least Squares Estimate Proof

Performance: Residuals, Multiple R2

OLS Properties
● Residuals
● The Intercept Term
● Existence of a Unique Solution

Linear Algebra Resources: Ed post 

https://edstem.org/us/courses/15436/discussion/1160473


Today’s Goal: Ordinary Least Squares
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2. Choose a loss 
function

3. Fit the model

4. Evaluate model 
performance

1. Choose a model

L2 Loss

Mean Squared Error 
(MSE)

Minimize
average loss
with calculus geometry

Multiple Linear 
Regression

Visualize, 
Root MSE 
Multiple R2

✅

The calculus derivation requires 
matrix calculus (out of scope, but 
here’s a link if you’re interested).
Instead, we will derive     using a 
geometric argument.

✅

https://en.wikipedia.org/wiki/Least_squares#Linear_least_squares


[Linear Algebra] Span

The set of all possible linear combinations of the columns of X 
is called the span of the columns of X (denoted                 ), also 
called the column space.
● Intuitively, this is all of the vectors

you can “reach” using the columns of X.
● If each column of X has length n,

                is a subspace of         .
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A linear combination of columns

30

We can also think of      as a linear combination of feature vectors, scaled by parameters.

So far, we’ve thought of our model as 
horizontally stacked predictions per datapoint:



A linear combination of columns

The set of all possible linear combinations of the columns of X 
is called the span of the columns of X (denoted                 ), also 
called the column space.
● Intuitively, this is all of the vectors

you can “reach” using the columns of X.
● If each column of X has length n,

                is a subspace of         .

Our prediction                   is a linear combination
of the columns of     . Therefore      . 
Interpret: Our linear prediction     will be in         ,

even if the true values       might not be.
Goal: Find the vector in                 that is closest to     . 
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Goal:
Minimize the L2 norm of 
the residual vector.
i.e., get the predictions     
to be “as close” to our 
true y values as 
possible.

This is the 
residual vector,
                       .
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How do we minimize 
this distance – the norm 
of the residual vector 
(squared)?

33



How do we minimize 
this distance – the norm 
of the residual vector 
(squared)?

The vector in span(X) 
that is closest to Y is 
the orthogonal 
projection of Y onto 
span(X).

We will not prove this property 
of orthogonal projection: see 
Khan Academy.
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https://www.khanacademy.org/math/linear-algebra/alternate-bases/orthogonal-projections/v/linear-alg-projection-is-closest-vector-in-subspace


How do we minimize 
this distance – the norm 
of the residual vector 
(squared)?

The vector in span(X) 
that is closest to Y is 
the orthogonal 
projection of Y onto 
span(X).

Thus, we should choose 
the θ that makes the 
residual vector 
orthogonal to span(X).

35



2. A vector v is orthogonal to     , the span of the columns of a matrix M,
if and only if v is orthogonal to each column in M.

Let’s express 2 in matrix notation. Let  ,        where       :

1. Vector a and Vector b are orthogonal if and only if their dot product is 0: 
This is a generalization of the notion of two vectors in 2D being perpendicular.

[Linear Algebra] Orthogonality
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v

v is orthogonal to each 
column of M,      

zero vector 
(d-length vector 
full of 0s).



Definition of orthogonality 
of   to 
(0 is the     vector)

The least squares estimate     is the parameter     that minimizes the objective function          :

Equivalently, this is the      such that the residual vector       is orthogonal to      .     

Ordinary Least Squares Proof

37

Rearrange terms

The normal equation

If     is invertible



This result is so important that it deserves its own slide.
It is the least squares estimate and the solution to the normal equation . 38



This result is so important that it deserves its own slide.
It is the least squares estimate and the solution to the normal equation . 39

🎉🎉🎉



Least Squares Estimate
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2. Choose a loss 
function

3. Fit the model

4. Evaluate model 
performance

1. Choose a model

L2 Loss

Mean Squared Error 
(MSE)

Minimize
average loss
with calculus geometry

Multiple Linear 
Regression

Visualize, 
Root MSE 
Multiple R2

✅
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Interlude

1805, French 
mathematician 
Adrien-Marie Legendre 
[mistaken portrait]

1809, German 
mathematician Carl 
Freidrich Gauss

Within ten years of publication, OLS was standard in 
astronomy/geodesy in France/Italy/Prussia.

The "least squares method" is directly translated 
from the French “méthode des moindres carrés.” 

In Gauss’s 1809 work on celestial bodies, “he claimed 
to have been in possession of the method of least 
squares since 1795. This naturally led to a priority 
dispute with Legendre.” [link]

1809 Irish- 
American 
Robert 
Adrain

https://en.wikipedia.org/wiki/Adrien-Marie_Legendre#Mistaken_portrait
https://en.wikipedia.org/wiki/Least_squares#The_method
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Performance
Lecture 11, Data 100 Fall 2022

OLS Problem Formulation
● Multiple Linear Regression Model
● Mean Squared Error

Geometric Derivation
● Lin Alg Review: Orthogonality, Span
● Least Squares Estimate Proof

Performance: Residuals, Multiple R2

OLS Properties
● Residuals
● The Intercept Term
● Existence of a Unique Solution

Linear Algebra Resources: Ed post 

https://edstem.org/us/courses/15436/discussion/1160473


Least Squares Estimate
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2. Choose a loss 
function

3. Fit the model

4. Evaluate model 
performance

1. Choose a model

L2 Loss

Mean Squared Error 
(MSE)

Minimize
average loss
with calculus geometry

Multiple Linear 
Regression

Visualize, 
Root MSE 
Multiple R2

✅

✅

✅



Demo

Multiple Linear Regression

44

Design matrixPrediction 
vector

Parameter 
vector

Note that our 
true output is 
also a vector:



Compare

[Visualization] Residual Plots
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Simple linear regression

Plot residuals vs
the single feature x.



Compare

Multiple linear regression

Plot residuals vs
fitted (predicted) values   .  

Check distribution around  

See notebook

[Visualization] Residual Plots
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Same interpretation as before  (Data 8 textbook):
● A good residual plot shows no pattern.
● A good residual plot also has a similar vertical spread 

throughout the entire plot. Else (heteroscedasticity), the 
accuracy of the predictions is not reliable.

Simple linear regression

Plot residuals vs
the single feature x.

Y_hat

Y 
- Y

_h
at

https://inferentialthinking.com/chapters/15/5/Visual_Diagnostics.html?highlight=heteroscedasticity#detecting-heteroscedasticity


Compare

[Metrics] Multiple R^2
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Simple linear regression

Error
RMSE

Linearity
Correlation coefficient, r

Multiple linear regression

Error
RMSE

Linearity
Multiple R2, also called the 
coefficient of determination



Compare

We define the multiple R² value as the proportion of variance or 
our fitted values (predictions)     to our true values y .

[Metrics] Multiple R^2
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Also called the correlation of determination.
R2 ranges from 0 to 1 and is effectively
“the proportion of variance that the model explains.”

For OLS with an intercept term (e.g.      ),

is equal to the square of correlation between y,    .

● For SLR,                  , the correlation between x, y.
● The proof of these last two properties is on the next hw



Compare

[Metrics] Multiple R^2
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Simple linear regression

Error
RMSE

Linearity
Correlation coefficient, r

Multiple linear regression

Error
RMSE

Linearity
Multiple R2, also called the 
coefficient of determination

As we add more features, our fitted values tend to become closer and closer 
to our actual y values. Thus, R² increases.

● The SLR model (AST only) explains 45.7% of the variance in the true y.
● The AST & 3PA model explains 60.9%.
Adding more features doesn’t always mean our model is better, though!
We are a few weeks away from understanding why.

R² = 0.457

R² = 0.609
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OLS Properties
Lecture 11, Data 100 Fall 2022

OLS Problem Formulation
● Multiple Linear Regression Model
● Mean Squared Error

Geometric Derivation
● Lin Alg Review: Orthogonality, Span
● Least Squares Estimate Proof

Performance: Residuals, Multiple R2

OLS Properties
● Residuals
● The Intercept Term
● Existence of a Unique Solution

These slides were not covered 
in lecture 2/22 but will be 
useful when you explore 
properties of OLS in homework.

(Supplemental video: 
https://youtu.be/dhG8GiZcyUE)

Linear Algebra Resources: Ed post 

https://youtu.be/dhG8GiZcyUE
https://edstem.org/us/courses/15436/discussion/1160473


Residual Properties

When using the optimal parameter vector, our residuals                       are orthogonal to                 .

Proof First line of our OLS estimate proof (slide).
For all linear models:

Since our predicted response      is in                 by definition,
it is orthogonal to the residuals.

For all linear models with an intercept term,
the sum of residuals is zero.
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You will prove both 
properties in homework. (Proof hint)



Properties when our model has an intercept term

For all linear models with an intercept term,
the sum of residuals is zero.

● This is the real reason why we don’t
directly use residuals as loss.

● This is also why positive and negative residuals will cancel out in any residual plot where 
the (linear) model contains an intercept term, even if the model is terrible.

It follows from the property above that for linear models with intercepts, 
the average predicted y value is equal to the average true y value.

These properties are true when there is an intercept term, and not necessarily when there isn’t. 
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You will prove these 
properties in homework.

(previous slide)



Does a unique solution always exist?
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Model Estimate Unique?

Constant Model + 
MSE

Yes. Any set of values
has a unique mean.

Constant Model + 
MAE

Yes, if odd.
No, if even. Return average 
of  middle 2 values.

Simple Linear 
Regression + MSE

Yes. Any set of 
non-constant* values has a 
unique mean, SD, and 
correlation coefficient.

Ordinary Least 
Squares
(Linear Model + 
MSE)

???



Understanding the solution matrices
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In most settings,
# observations # features

N >>     p



Understanding the solution matrices

In practice, instead of directly inverting matrices, we can use more efficient
numerical solvers to directly solve a system of linear equations.
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The Normal Equation:

Note that at least one solution always exists:
Intuitively, we can always draw a line of best fit for a given set of data, but there may be 
multiple lines that are “equally good”. (Formal proof is beyond this course.)



Uniqueness of a solution: Proof

Claim
The Least Squares estimate    is unique if and only if       is full column rank.
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Proof
● The solution to the normal equation      is the least square estimate     .

●      has a unique solution if and only if the square matrix             is invertible, which happens
if and only if            is full (column) rank.
○ The rank of a matrix is the max # of linearly independent columns (or rows) it contains.
○            has shape (p +1) x (p + 1), and therefore has max rank p + 1.

●            and       have the same rank (proof out of scope).

●  Therefore           has rank p + 1 if and only if      has rank p + 1 (full column rank).



Claim:
The Least Squares estimate    is unique if and only if       is full column rank.

When would we not have unique estimates?

Uniqueness of a solution: Interpretation
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2. If we our design matrix       has features that are linear combinations of other features.
○ By definition, rank of      is number of linearly independent columns in     .
○ Example: If “Width”, “Height”, and “Perimeter” are all columns,

■ Perimeter = 2 * Width + 2 * Height    →    is not full rank.
○ Important with one-hot encoding (to discuss in later).

1. If our design matrix      is “wide”:
○ (property of rank) If n < p,  rank of      = min(n, p + 1) < p + 1.
○ In other words, if we have way more features

than observations, then       is not unique.
○ Typically we have n >> p so this is less of an issue.

p + 1 features

n 
datapoints



Does a unique solution always exist?

Model Estimate Unique?

Constant Model + 
MSE

Yes. Any set of values
has a unique mean.

Constant Model + 
MAE

Yes, if odd.
No, if even. Return average 
of  middle 2 values.

Simple Linear 
Regression + MSE

Yes. Any set of 
non-constant* values has a 
unique mean, SD, and 
correlation coefficient.

Ordinary Least 
Squares
(Linear Model + 
MSE)

Yes, if      is full col rank 
(all cols lin independent,
# datapts >> # feats)
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Ordinary Least Squares
Content credit: Lisa Yan, Ani Adhikari, Deborah Nolan, Joseph Gonzalez

LECTURE 11
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