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OSS

● Substrait: Co-creator
● Apache Arrow: Co-creator, Founding PMC Chair
● Apache Calcite: Founding PMC member
● Apache Drill: Co-creator, Founding PMC Chair

Commercial

● Sundeck: CEO & Co-founder
● Dremio: CTO & Co-founder

Who?



The world has changed

3

The coupling of API and compute 
is breaking down

Data lock-in is disappearing

Generic Compute Kernels

Compute Engine Specialization

Cloud Storage as System-of-Record

Rise of Table Formats



Warehouse, Lakehouse, soon we’ll see the Fairhouse
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• Built on cloud storage
• Unlimited Scale
•

Snowflake, Redshift
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• Shared data ownership
• API choice independent of 

storage format
• Reduction in data gravity

Databricks, Dremio, Starburst
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• Specialized hardware
• Designed specifically 

for analytical use

Teradata, Netezza
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• Rise of the generic engine
• Engine options independent of 

api choice



Best-of-breed Decomposition Requires Components

API

Engine

API

Engine

Compiler

Storage

Storage

actually more like this…

Computation

Data

Data

Instruction

Instruction

Instruction



How to collaborate on these layers?

Substrait
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Instruction

● API independent computation 
definition

● Engine independent compilers
● Engine independent 

computational storage

● High performance 
independent in-memory 
format

● In-engine optimized 
wire-friendly representation



Inspiration

Abstract Need: Drive Innovation

JVM 
Bytecode

LLVM IR

FE 
Innovations

Scala, 
Clojure, 
Kotlin

Rust, Swift

BE 
Innovations

Dalvik, Graal WASM

Concrete Need: Solve Real Problems

● Iceberg: Need for a common 
representation of views

● Arrow: Common representation of 
compute plans across engines

● Calcite: expose functionality to non-jvm 
environments



Substrait: Cross-Language Serialization for Relational Algebra

Status

● Formed September 2021
● Several integrations ongoing, 30+ contributors from multiple companies

Purpose

● Create a well-defined, cross-language specification for data compute operations

Why

● New kernels/engines should work with existing analysis experiences
● It should be easy to create new computation design languages/platforms
● Innovation is stifled when each new data system needs to solve all FE and BE problems



Theoretical Integrations

substrait

C++ Kernel

ibis

python r babel sql

views

presto sql scala



Core Principles

● Specification-first
● Language independent & serializable
● Plans are self-contained, have clear intention

○ Allow for dumb consumers
● Structured hierarchy of primitives
● Common primitive definitions within project

○ Common types, functions, relational operators
● Extensibility with discipline



Plan

Relations

Substrait Primitives

● Types
○ Simple (e.g. i32, fp32, string)
○ Compound (e.g. varchar<N>, fixedbinary<N>)
○ Complex (e.g. List<E>, Map<K,V>, Struct<T,U,...Z>)

● Expressions
○ Switch statements
○ Field selection (simple and complex)
○ Literals

● Functions 
○ Scalar
○ Aggregate
○ Window
○ Table

● Relations
○ Production
○ Consumption
○ Distribution
○ Transformation

● Plans
○ Splittable
○ Normalized for space efficiency

● Serialization
○ Binary (currently protobuf)
○ Text (tbd, likely yaml)

Types
i8 i32

fp32 struct

Expressions

Functions
add avg

rank sum

join agg

filter read

case field

literal orlist

Serialization
protobuf text



Extensibility with Discipline

● Project inclusive of patterns that show up in most projects
○ int32, decimal, add, subtract, aggregate, join, hash join, etc.

● Specification defined extensibility
○ Separation between optimization and semantic differences
○ Well-defined ways to sync independent systems around extensions

● Types
○ Support for physical variations of existing types (row-wise vs columnar, rle or not, etc)
○ Declare custom types in YAML and use in functions, expressions, etc.

● Functions
○ Declare custom functions via YAML, standard referencing scheme
○ User-defined functions (write once, use many times)
○ Embedded (business logic closure in scala, python, llvm, webassembly)

● Relations
○ Extend existing relations for execution optimization information
○ Declare new relations via serialization extensions (such as protobuf
○ User-defined and Embedded patterns



Project Governance

Guiding Principles

● Consensus-driven project
● All collaboration and decision-making is done in the public
● Avoid control by any particular organization or person
● Users of Substrait should be confident that the project won't one day "change its 

stripes" like Redis, Confluent or various other projects did.

Details

● Apache 2.0 Licensed
● Github Project
● Active contributions from several companies
● Move to a foundation if contributors so prefer



Core Components

● Specification/Format 
○ github.com/substrait-io/substrait 

● Language specific helper libraries (Java, C++, C#, Go, Rust)
○ github.com/substrait-io/substrait-* 

● Plan Validator
○ github.com/substrait-io/substrait-validator

● Integration Tests
○ github.com/substrait-io/consumer-testing 

● Network Protocol (On top of Arrow Flight SQL)
○ github.com/apache/arrow/pull/13492 

● Integations
○ Next page…

https://github.com/substrait-io/substrait
https://github.com/substrait-io/substrait-*
https://github.com/substrait-io/substrait-validator
https://github.com/substrait-io/consumer-testing
https://github.com/apache/arrow/pull/13492
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Actual Implementations
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1 2 3 4

5 4 6 7

1: bit.ly/3AyLsP9 
2: bit.ly/3AC6jku
3: bit.ly/3TrY3wh
4: bit.ly/3pTi2q3
5: bit.ly/3TuySck
6: bit.ly/3R1CFwl
7: bit.ly/3AUNH0G

https://bit.ly/3AyLsP9
https://bit.ly/3AC6jku
https://bit.ly/3TrY3wh
https://bit.ly/3pTi2q3
https://bit.ly/3TuySck
https://bit.ly/3R1CFwl
https://bit.ly/3AUNH0G


Join the Community

● Start using Substrait
● Join the community
● Share your feedback

● Substrait Slack
○ Subscribe

● Github
○ Start a discussion
○ Open an issue
○ Submit a PR

https://join.slack.com/t/substrait/shared_invite/zt-10oeki45w-FARWnh4NMpXnm4x~hWyiGQ
https://github.com/substrait-io/substrait/discussions
https://github.com/substrait-io/substrait/issues
https://github.com/substrait-io/substrait/pulls

