
Rethinking DBMS Composability
substrait.io

Substrait    



OSS

● Substrait: Co-creator
● Apache Arrow: Co-creator, Founding PMC Chair
● Apache Calcite: Founding PMC member
● Apache Drill: Co-creator, Founding PMC Chair

Commercial

● Sundeck: CEO & Co-founder
● Dremio: CTO & Co-founder

Who?



The world has changed

3

The coupling of API and compute 
is breaking down

Data lock-in is disappearing

Generic Compute Kernels

Compute Engine Specialization

Cloud Storage as System-of-Record

Rise of Table Formats



Warehouse, Lakehouse, soon we’ll see the Fairhouse
FairhouseLakehouse

Query Engines

APIs

Tables & Catalogs

Cloud 
Warehouse

SQL API

Processing Engine

Storage (internal)

Spark 
API/SQL

Spark 
Engine

2015 2020

Delta 
Lake

Apache 
Hudi

Compute Engines

Spark 
API/SQL

Spark 
Engine

Trino 
SQL

Presto 
Engine

Redshift 
SQL

Dremio 
Engine

Velox 
Engine

Arrow 
Engine

Pandas Ibis

Tables & Catalogs

Apache 
Iceberg

Delta 
Lake

Hudi Tabular
Datalake 
Formatio

n

2025

• Built on cloud storage
• Unlimited Scale
•

Snowflake, Redshift

Dremio 
SQL

Dremio 
Engine

Trino 
SQL

Trino 
Engine

Apache 
Iceberg

• Shared data ownership
• API choice independent of 

storage format
• Reduction in data gravity

Databricks, Dremio, Starburst

Warehouse 
Appliance

SQL API

Processing Engine

Storage (internal)

• Specialized hardware
• Designed specifically 

for analytical use

Teradata, Netezza

2000

• Rise of the generic engine
• Engine options independent of 

api choice



Best-of-breed Decomposition Requires Components

API

Engine

API

Engine

Compiler

Storage

Storage

actually more like this…

Computation

Data

Data

Instruction

Instruction

Instruction



How to collaborate on these layers?

Substrait

API

Engine

Compiler

Storage

Computation

Data

Data

Instruction

Instruction

Instruction

● API independent computation 
definition

● Engine independent compilers
● Engine independent 

computational storage

● High performance 
independent in-memory 
format

● In-engine optimized 
wire-friendly representation



Inspiration

Abstract Need: Drive Innovation

JVM 
Bytecode

LLVM IR

FE 
Innovations

Scala, 
Clojure, 
Kotlin

Rust, Swift

BE 
Innovations

Dalvik, Graal WASM

Concrete Need: Solve Real Problems

● Iceberg: Need for a common 
representation of views

● Arrow: Common representation of 
compute plans across engines

● Calcite: expose functionality to non-jvm 
environments



Substrait: Cross-Language Serialization for Relational Algebra

Status

● Formed September 2021
● Several integrations ongoing, 30+ contributors from multiple companies

Purpose

● Create a well-defined, cross-language specification for data compute operations

Why

● New kernels/engines should work with existing analysis experiences
● It should be easy to create new computation design languages/platforms
● Innovation is stifled when each new data system needs to solve all FE and BE problems



Theoretical Integrations

substrait

C++ Kernel

ibis

python r babel sql

views

presto sql scala



Core Principles

● Specification-first
● Language independent & serializable
● Plans are self-contained, have clear intention

○ Allow for dumb consumers
● Structured hierarchy of primitives
● Common primitive definitions within project

○ Common types, functions, relational operators
● Extensibility with discipline



Plan

Relations

Substrait Primitives

● Types
○ Simple (e.g. i32, fp32, string)
○ Compound (e.g. varchar<N>, fixedbinary<N>)
○ Complex (e.g. List<E>, Map<K,V>, Struct<T,U,...Z>)

● Expressions
○ Switch statements
○ Field selection (simple and complex)
○ Literals

● Functions 
○ Scalar
○ Aggregate
○ Window
○ Table

● Relations
○ Production
○ Consumption
○ Distribution
○ Transformation

● Plans
○ Splittable
○ Normalized for space efficiency

● Serialization
○ Binary (currently protobuf)
○ Text (tbd, likely yaml)

Types
i8 i32

fp32 struct

Expressions

Functions
add avg

rank sum

join agg

filter read

case field

literal orlist

Serialization
protobuf text



Extensibility with Discipline

● Project inclusive of patterns that show up in most projects
○ int32, decimal, add, subtract, aggregate, join, hash join, etc.

● Specification defined extensibility
○ Separation between optimization and semantic differences
○ Well-defined ways to sync independent systems around extensions

● Types
○ Support for physical variations of existing types (row-wise vs columnar, rle or not, etc)
○ Declare custom types in YAML and use in functions, expressions, etc.

● Functions
○ Declare custom functions via YAML, standard referencing scheme
○ User-defined functions (write once, use many times)
○ Embedded (business logic closure in scala, python, llvm, webassembly)

● Relations
○ Extend existing relations for execution optimization information
○ Declare new relations via serialization extensions (such as protobuf
○ User-defined and Embedded patterns



Project Governance

Guiding Principles

● Consensus-driven project
● All collaboration and decision-making is done in the public
● Avoid control by any particular organization or person
● Users of Substrait should be confident that the project won't one day "change its 

stripes" like Redis, Confluent or various other projects did.

Details

● Apache 2.0 Licensed
● Github Project
● Active contributions from several companies
● Move to a foundation if contributors so prefer



Core Components

● Specification/Format 
○ github.com/substrait-io/substrait 

● Language specific helper libraries (Java, C++, C#, Go, Rust)
○ github.com/substrait-io/substrait-* 

● Plan Validator
○ github.com/substrait-io/substrait-validator

● Integration Tests
○ github.com/substrait-io/consumer-testing 

● Network Protocol (On top of Arrow Flight SQL)
○ github.com/apache/arrow/pull/13492 

● Integations
○ Next page…

https://github.com/substrait-io/substrait
https://github.com/substrait-io/substrait-*
https://github.com/substrait-io/substrait-validator
https://github.com/substrait-io/consumer-testing
https://github.com/apache/arrow/pull/13492


Theoretical Integrations

substrait

C++ Kernel

ibis

python r babel sql

views

presto sql scala



Actual Implementations

substrait

C++ Kernel

ibis

python r babel sql

views

presto sql scala

1 2 3 4

5 4 6 7

1: bit.ly/3AyLsP9 
2: bit.ly/3AC6jku
3: bit.ly/3TrY3wh
4: bit.ly/3pTi2q3
5: bit.ly/3TuySck
6: bit.ly/3R1CFwl
7: bit.ly/3AUNH0G

https://bit.ly/3AyLsP9
https://bit.ly/3AC6jku
https://bit.ly/3TrY3wh
https://bit.ly/3pTi2q3
https://bit.ly/3TuySck
https://bit.ly/3R1CFwl
https://bit.ly/3AUNH0G


Join the Community

● Start using Substrait
● Join the community
● Share your feedback

● Substrait Slack
○ Subscribe

● Github
○ Start a discussion
○ Open an issue
○ Submit a PR

https://join.slack.com/t/substrait/shared_invite/zt-10oeki45w-FARWnh4NMpXnm4x~hWyiGQ
https://github.com/substrait-io/substrait/discussions
https://github.com/substrait-io/substrait/issues
https://github.com/substrait-io/substrait/pulls

