

GlueX Experience with the Open Science Grid

past experience, present challenges, future prospects

Richard Jones, University of Connecticut

This work is supported by the U.S. National Science Foundation under grant 1812415

Background: the Gluex experiment

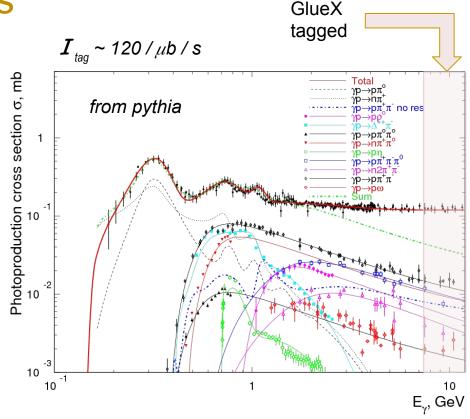
GlueX at Jefferson Lab

- 9 GeV photons, fixed target
- map the hybrid meson spectrum

installed: 2012-2014

commissioned: 2014-2016

approved physics: 2017-2022


GlueX event, data rates

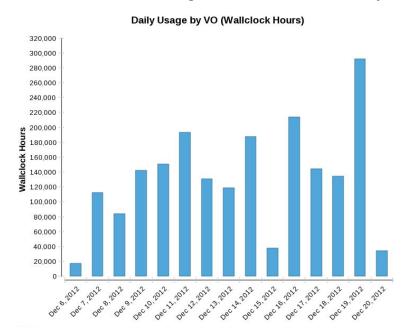
Experimental data rates

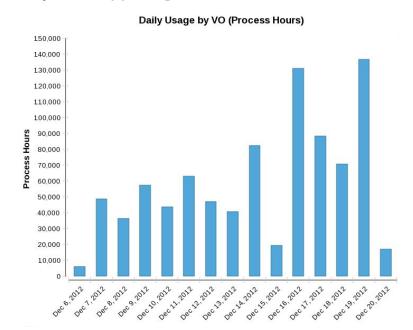
- 80 kHz trigger rate (~1.6GB/s)
- many exclusive final states
- < 50% are simple topologies

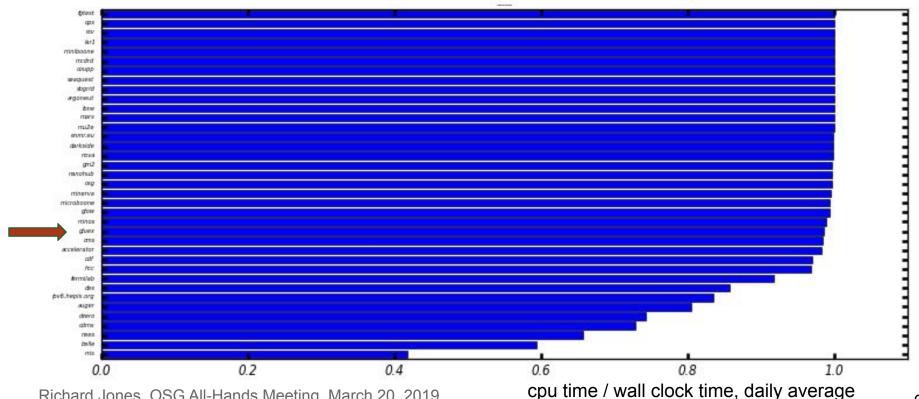
Simulated data estimates

- based on *GlueX-doc-3813* (2018)
- 36 Mcore-hr/yr (2020 and beyond)
- primarily targeted for OSG

OSG: the Gluex VO


- Gluex vo created in 2009 (10 years!)
- NSF Physics at the Information Frontier
- underwent an early series of data challenges
 - data challenge I 2 Mcore-hr, 10 days
 - data challenge II 6 Mcore-hr, 30 days
 - o campus cluster campaign 1 Mcore-hr, 15 days
- reconstruction is maturing, analysis is ramping up...




Open Science Grid

- cpu availability was very high (>10,000 cores peak)
- production efficiency was not great (40 60%)
- part of inefficiency is due to pre-emption (opportunistic)
- understanding sources of inefficiency is reason why we stopped @5B events

Richard Jones, OSG All-Hands Meeting, March 20, 2019 CPU to This work is supported by the National Science Foundation under grant 1508238

Evolution in methodology

- 1. OSG_APPS, OSG_DATA → /cvmfs/oasis.opensciencegrid.org
- 2. singularity containers → /cvmfs/singularity.opensciencegrid.org

Big gains in opportunistic throughput seen by adapting software to run on the widest possible range of platforms.

For Gluex, this was a iterative, labor-intensive, experts-only process until ...

All Gluex jobs containerized, can run on sites without singularity installed.

Evolution in methodology (2)

- Nightly builds inside standard container □ oasis updates (as needed)
- 2. Software release management using github tags + *versions.xml*
- 3. Container rarely updated (once per year?)
- 4. Multiple binary releases maintained on oasis
 - a. selected by demand
 - b. currently on the high side 150 GB oasis footprint
 - c. Is there a <u>best practice</u> to follow in this area?

GlueX offline computing resource needs (GlueX-doc-3813)

- 1. 130 Mcore-hr/yr experimental data reconstruction
 - Jefferson Lab compute facility (total 70 Mcore-hr/yr, all experiments)
 - NERSC (proven option, but competitive)
 - o other??
- 2. 36 Mcore-hr/yr Monte Carlo simulation
 - primarily targeted for OSG
 - cannot live on donations alone

Existing OSG resources for GlueX:

- 1. **UConn_OSG** site: 600-core cluster
 - active on OSG since ca. 2010
 - contributed 3-4 Mhr/yr opportunistic OSG cycles over past decade
- 2. GLUEX_US_FSU_HNPGRID site: "entry-level" cluster
 - active on OSG since ca. 2017
 - contributed 100 khr/yr to OSG over the past 2 years
 - starting point for future growth in GlueX computing at FSU

This amounts to 10% of the projected need for GlueX simulations over past 2019.

Where are the OSG resources for GlueX?

A number of *resourced GlueX institutions* have offered to contribute:

- a. Carnegie Mellon University
- b. Indiana University stanley, karst, BigRed
- c. Florida State University RACF
- d. George Washington University ColonialOne
- e. College of William and Mary vortex
- f. University of Regina computecanada
- g. UConn Health Center HPC xanadu
- h. UConn Storrs HPC hornet

Where are the OSG resources for GlueX?

A number of resourced GlueX institutions have offered to contribute, but the barriers turned out to be higher than expected -- 2017 summer of setbacks.

Summer 2018 -- what can be done to move forward?

- for the time being, skip OSG site integration
- implement a separate stand-alone condor pool (at UConn)
- get access to individual user accounts on every member's cluster
- customize a glidein for each individual cluster (bosco, 8 in total)
- install local copy of complete GlueX stack + container
- diagnose, debug, optimize...

PBS

Summer 2018 -- lessons from "bosco" exercise

It was successful

- 1 Mcore-hr of simulations completed in 15 days
- average 5k cores active during periods when not debugging
- spanned very different types: included BigRed Cray HPC @ IU

2. It was a management headache

- like going back to opportunistic OSG ca. 2012 (rsync, pilot jobs, etc.)
- no two clusters the same, each one like a green field
- whack-a-mole ops -- not sustainable for GlueX production long-term.

Where are the OSG resources for GlueX?

A number of resourced GlueX institutions have offered to contribute, and through the summer 2018 bosco exercise all have done so, except one.

BUT

- There are good reasons to go the route of full OSG site integration.
- This will require some effort from individual site admins.
- More than technical expertise is needed.

Where are the OSG resources for GlueX?

Broader lessons from the GlueX bosco exercise:

- 1. Private cluster resources owned by individual groups are not keeping pace with the needs of our science.
- 2. Growth is happening in *shared computing resources* at universities.
- 3. Hurdles to executing grid jobs there are <u>primarily administrative</u>, not technical.
- 4. <u>In-advance discussions, agreements</u> with the central IT managers of these resources are needed -- they can be very helpful **or not**.

Where are the OSG resources for GlueX?

So what is the plan going forward?

- Discussions have begun with some of our central campus IT admins (CMU, IU, UConn, Compute Canada)
- Idea is for central cluster to be configured with a OSG glidein mechanism and accept OSG jobs, subject to administrative policies agreed among the primary stakeholders.
- 3. It really helps if we bring something to the table!
- 4. UConn -- trying the dog food

Where are the OSG resources for GlueX?

National Science Foundation: Campus Computing and the Computing Continuum

NSF 19-553 sollicitation: "Local campus computing resources have emerged as an important aggregated and shared layer of scientific computing, as evidenced by the growth in Open Science Grid (an NSF-funded distributed scientific computing fabric of shared computing clusters across more than 100 institutions) productivity that will approach two billion CPU hours delivered in scientific computing for the calendar year 2018."

Open Science Grid

Where are the OSG resources for GlueX?

University of Connecticut proposal 1925716

- submitted February 20, 2019
- \$400,000 for compute nodes (1020 cores) + storage (1 PB)
- enables a broad range of science at UConn
 - experimental nuclear physics
 - geophysics
 - astrophysics
 - public health

Where are the OSG resources for GlueX?

Jefferson Lab computing review, November 2018:

- UConn 10M core hours
- FSU 5M core hours (so far, more on the horizon)
- Northwestern 2M core hours
- Regina 2M core hours (so far, asking for more)
- Indiana 4M core hours
- Florida International 2M core hours
- George Washington 5M core hours (rough estimate)
- College of William and Mary 2M core hours
- opportunistic cycles 10M core hours

Evolution: beyond simulation?

GlueX offline computing resource needs (GlueX-doc-3813)

- 1. 130 Mcore-hr/yr experimental data reconstruction
 - Jefferson Lab compute facility (total 70 Mcore-hr/yr, all experiments)
 - NERSC (proven option, but competitive)
 - other??

In the future, maybe OSG can contribute to the greater need here

- This is intrinsically a <u>HTC problem</u>
- To solve it we are looking primarily to HPC resources (technical reasons)
- These problems should be readily solvable (UConn working with WCHTC)

Evolution beyond GlueX

Also from the November, 2018 Jefferson Lab computing review:

Plan to provision for simulation offsite ~63 M core hours per year

- OSG pioneered by GLUEX, we will follow.
 - Submit jobs from JLab OSG submit node.
 - Collaborators contribute to OSG –in particular MIT.
- Other
 - Submit simulation in Docker container locally at the remote site using remote site's staff and batch system. Return results to Jlab.
 - INFN and others interested in this.
- NERSC
 - Submit via SWIF2 workflow tool (follow GLUEX).
 - Have requested NERSC allocation of 30ivi core nours.
 - Enough to cover 50% of the annual simulation workload.

Backup slides

History: slide from Oct. 2012, rtj

- Experiment is in construction phase until 2014
- Usage increasing with demand for Monte Carlo

run period	usage
9/2009 — 9/2010	26.4 khr
9/2010 - 9/2011	1.1 Mhr
9/2011 - present	2.1 Mhr

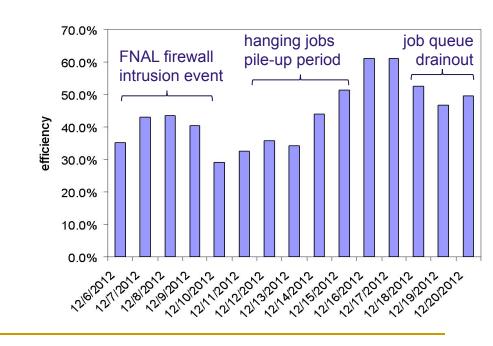
- Growth has slowed as work turns to digesting the results
- **Task:** simulation of background QCD photoproduction (Pythia)
- Purpose: develop cuts to suppress background, measure leakage from minimum-bias events into signal sample after cuts, requires very large statistics MC samples, shared between analysis tasks.
- Plans: saturate at the level 5-10M core-hr/yr until physics data collection begins ca. 2015.
- Strategy: glideinWMS support from OSG admins outstanding!

Data Challenge 1: Dec. 2012

Purpose of the exercise:

- 1. **Test** the current simulation and reconstruction tools
 - bggen pythia-based background Monte Carlo generator
 - hdgeant geant3-based physics simulation, base detector
 - mcsmear detector efficiency and resolution models
 - hd-ana reconstruction of tracks, neutrals
 - REST plugin summary of reconstruction results
- 2. **Develop** the ability to manage simulation production and data storage at rates approaching GlueX Phase I.
- 3. **Produce** a large sample of background simulation data.

initial goal: 10 billion events, 60 days at startup intensity



- total of 5.56B events simulated
 - > 4.24B on the OSG
 - 0.96B at Jefferson Lab
 - > 0.36B at CMU
- completed over a period of 14 days

Ran into several limiting factors:

- security event
- 2. software staging
- 3. freeze-ups in hd-ana
- memory hogging in hd-ana
- 5. segfaults in hdgeant
- 6. irreproducibility in mcsmear

Data Challenge 2: Apr. 5-24, 2014

Similar in purpose to DC1:

1. **Test** the current simulation and reconstruction tools, see if we fixed problems from DC1, check for new ones.

2. **Develop** the ability to manage production and data storage at rates approaching GlueX Phase I.

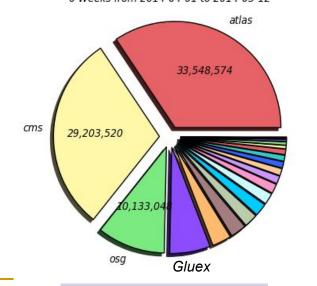
 Produce a large sample of background simulation data, sufficient statistics to address issues.

Data Challenge 2: Apr. 5-24, 2014

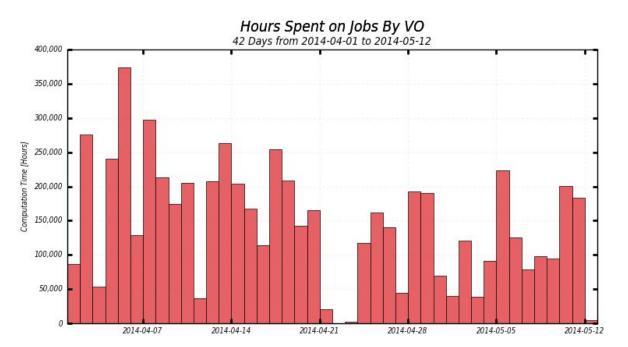
Similar in purpose to DC1:

- 1. **Test** the current simulation and reconstruction tools, see if we fixed problems from DC1, check for new ones.
 - more realistic simulation
 - include electromagnetic background
 - improved reconstruction
- 2. **Develop** the ability to manage production and data storage at rates approaching GlueX Phase I.

3. **Produce** a large sample of background simulation data, sufficient statistics to address issues.


Data Challenge 2: Apr. 5-24, 2014

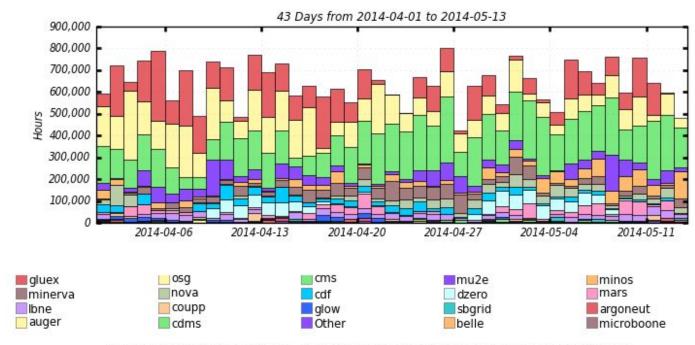
Similar in purpose to DC1:


- 1. **Test** the current simulation and reconstruction tools, see if we fixed problems from DC1, check for new ones.
 - more realistic simulation
 - include electromagnetic background
 - improved reconstruction
- 2. **Develop** the ability to manage production and data storage at rates approaching GlueX Phase I.
 - software distribution using cervnvm / oasis
 - particular focus on job efficiency
- 3. **Produce** a large sample of background simulation data, sufficient statistics to address issues.

Wall Hours by VO (Sum: 97,604,057 Hours)
6 Weeks from 2014-04-01 to 2014-05-12

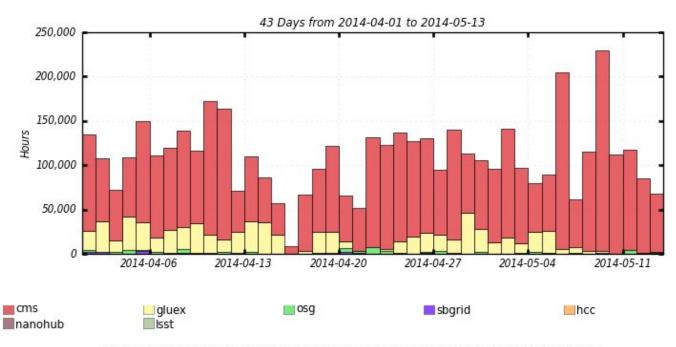
 $6M core-hr = DC1 \times 2$

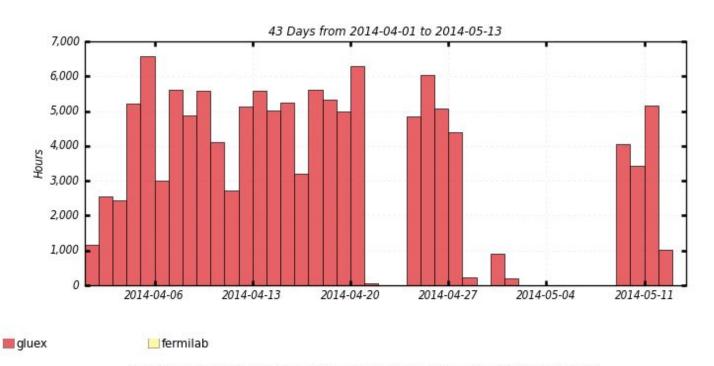
Final event tally


CMU	170M	2%
MIT	760M	9%
JLAB	2000M	25%
OSG	5200M	64%
total	8100M	100%

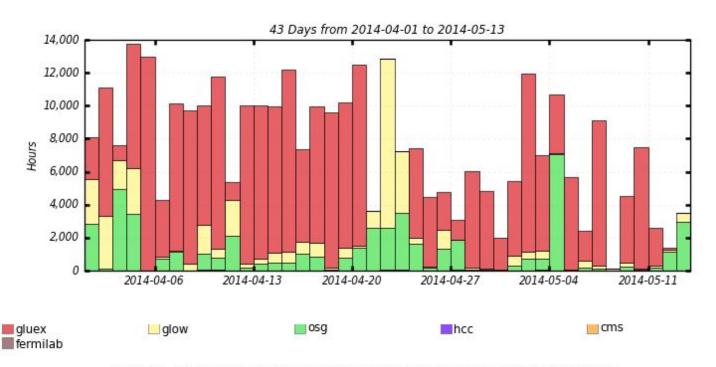
gluex

Gluex usage on the Fermilab site

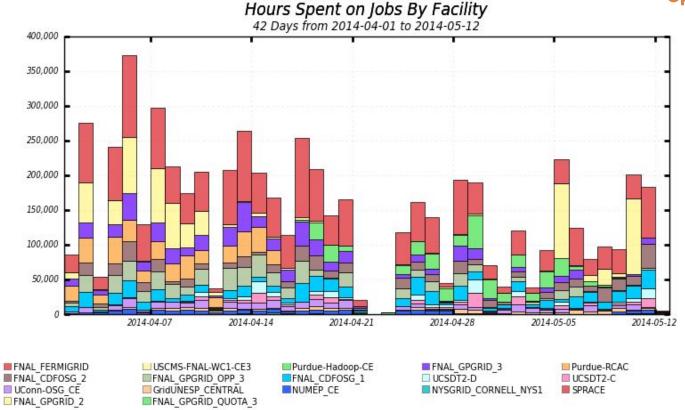

. .


Gluex usage on the Purdue site

. .

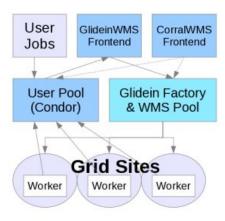


Gluex usage on the Northwestern site



Gluex usage on the UConn site

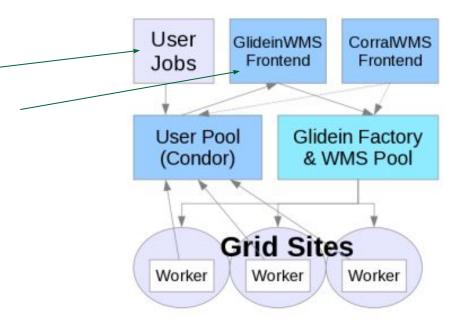
Gluex activity on osg 2014-2016



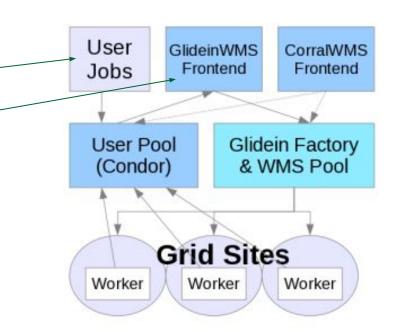
Gluex @ — the reboot

- OSG Executive Director, Frank Wuerthwein speaks at NP Computing Workshop, Newport News, VA in March, 2016.
- JLab CIO, Amber Boehnlein initiates a pilot project for JLab users.

scosg16: a GWMS submit host for JLab users


- located at JLab
- supported by JLab IT staff
- GlueX to be among the first users
- only out-flow of work is currently envisioned
- > server configuration recommended, tested by OSG expert
- > server installed, configured in 2Q 2017, testing by GlueX is now underway.

New infrastructure for osg @ jlab:


- 1. scosg16: GWMS submit host for JLab users
- 2. GWMS Frontend service provided by OSG ops

Gluex @ — the reboot

New infrastructure for osg @ jlab:

- 1. scosg16: GWMS submit host for JLab users
- 2. GWMS Frontend service provided by OSG ops
- 3. Opportunistic cycles on OSG continue to grow
- 4. Two new member universities in Gluex moving this summer to stand up local resources on osg
- 5. Software distribution is now greatly simplified by the use of the new *Gluex singularity container*:
 - singularity.opensciencegrid.org
 - oasis.opensciencegrid.org

- osg represents a new way of working for JLab users
- □ lab IT management conscious of *user support issues*
- □ JLab collaborations are small, developing new expertise can be expensive

- osg represents a new way of working for JLab users
- □ lab IT management conscious of *user support issues*
- □ JLab collaborations are small, developing new expertise can be expensive

BUT

- grid production is a good match to GlueX needs for simulations
- recent work by **OSG + JLab** staff has been **a real boost**
- new effort is underway to enable us to exploit OSG for Gluex

Backup slides

Support for Gluex users

- Support for resource consumers (15 users registered)
 - howto get a grid certificate
 - howto access data from DC
 - howto test your code on osg
 - howto run your skims on osg

Quickstart users guide for Gluex

https://halldweb.jlab.org/wiki/index.php/Using the Grid

Gluex OSG HOWTO series (R.Jones) https://halldweb.jlab.org/wiki/index.php/HOWTO_get_your_

jobs to run on the Grid

- Support for resource providers (UConn, NWU, FIU, FSU, CMU, IU, MIT?)
 - NOT a commitment to 100% allocation to OSG jobs
 - OSG site framework assumes that the local admin retains full control over resource utilization (eg. supports priority of local users)
 - UConn Gluex site running for 8 years
 - Northwestern Gluex site running for 3 years

GlueX Data Challenge #1

- total of 5,561,650000 events *successfully* generated
 - 4G events produced on the OSG (~2M core-hours)
 - 0.9G events at Jefferson Lab
 - 0.3G events at CMU
- completed over a period of 14 days in Dec., 2012
- output data saved in REST format
 - Reconstructed Event Summary Type (no hits information)
 - approx. 2.2 kB/event, including MC generator event info
 - hadronic interaction in every event (pythia 8.4 9.0 GeV)
 - no em beam background or hadronic pile-up included
 - □ 111236 files stored, 50k events each
 - typical run time 8 hours / job on Intel i7

Problems encountered in OSG production

- 1. GlueX software environment staging
 - 20 packages to install (counting all of sim-recon as 1)
 - production spread over 8 sites (fnal.gov, cornell.edu, purdue.edu, ucllnl.org, ucsd.edu, unesp.br, org.br, uconn.edu)
- 2. freeze-ups in hd-ana
 - occurred any time an event took >30s to process
 - dependent on other things happening at the site
 - tended to occur in clusters, many jobs at once
- 3. memory hogging in hd-ana (feeds into 2)
- 4. segfaults in hdgeant
 - artifact from one node at UConn bad SDRAM chip
- 5. irreproducibility in mcsmear

Production inefficiency

- □ 10% jobs would hang in hd ana, up to 24hr.
- □ 24hr is 300% inflation of normal job time
- ☐ Ejected jobs would get requeued for later execution.
- Some fraction of these would hang 2nd. 3rd time around...
- Ad-hoc scripts were written to prune jobs that were stuck looping.
- Other known factors (store output to SRM, thrashing on memory hogs...) not quantified.

FNAL firewall intrusion event

hung job script development

job queue drainout