

Where do we start ?

Where do we start ?

● UI

Where do we start ?

● UI

● Server Log

The error message:

[errorMessage] => org.hibernate.exception.
LockAcquisitionException: Could not execute
JDBC batch update; nested exception is
javax.persistence.PersistenceException:
org.hibernate.exception.LockAcquisitionExcepti
on: Could not execute JDBC batch update
 [trace] => Exception Thrown of type class
org.springframework.orm.jpa.JpaSystemExcept
ion with trace ::

Questions?

Questions?

● Names of Tables involved ?

Questions?

● Names of Tables involved ?

● Storage Engine/Type of Tables involved ?
○ Innodb or MyISAM or Memory or Blackhole

 trivia

What's a Storage Engine in MySQL?

 trivia

What's a Storage Engine in MySQL?

Ans:

It decides how to store / retrieve data from the
disk.

 trivia

Interface StorageEngine{

public void insertRow();

public Rows selectRows(int to, int from);

public void deleteRows(int pos);

}

 trivia
class BlackHole implements StorageEngine{

public void insertRow(){
// do nothing

}

public Rows selectRows(int to, int from){
return EmptySet;

}

public void deleteRows(int pos) {
 // do nothing
}

}

Locks:

● Table Lock - happens only in MyISAM

● Row Locks - happen only in Innodb

● Index Locks - indexes on table columns

Questions?

● Names of Tables involved in TXN ?

● Types of Tables involved ?
○ Innodb or MyISAM or Memory or Blackhole

● What are the queries hitting the tables ?
○ Updates/ delete / inserts / SELECTS

Most common Lock Error:

1205 (ER_LOCK_WAIT_TIMEOUT)
Lock wait timeout expired.

Most common Lock Error:

1205 (ER_LOCK_WAIT_TIMEOUT)
Lock wait timeout expired.

The statement that waited too long was rolled
back (not the entire transaction).

i.e. Txn - A waited for Txn - B & it timed out.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_rollback
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_rollback
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_transaction

Most common Lock Error:

1213 (ER_LOCK_DEADLOCK)
Encountered a deadlock.

A waits for B which waits for A.

The tables, queries in TXN

Table:
PAYMENT (InnoDB)

Query (multiple update in txn):
UPDATE PAYMENT

set payment_id = 'xyz'
 where
last_modified = <> and
payment_id = 'xyz'
and status = <> and user = <>

Guess work...

" Interesting fact:

I was looking for differences between database1 and database2
variables.
One variable which was distinctly missing from database1 while
there in database2 is innodb_merge_sort_block_size.

This is used by fast_index_creation (which is set to ON for both
servers) to create indexes faster.

The absence of it on database1 might be resulting in it taking
more time in updating/creating indexes. "

Guess work...

Its some MySQL Bug

Lets do something else.

Lets do something else.

● Look at MySQL server Logs

Lets do something else.

● Look at MySQL server Logs.

● Since the table is InnoDB. lets see status of
the engine.

"show engine innodb status"
"show full processlist"

 trivia

"show engine innodb status"

● current transactions
○ what locks they hold
○ how long they are active

● status of mysql server threads

● latest detected deadlocks

Search more...

Now the real questions ?

How frequently does the exception occur ?
[10/60 times]

what time did the last error occur ?
[08:28 pm Thursday, Feb 13, 2013 (IST)]

The most important

 "The Exception was thrown immediately"

i.e.

when one tried to acquire lock through update
the exception was immediate

It was Deadlock

The latest detected deadlock in 'show engine innodb
status' clearly listed down the same tables.
&

It was Deadlock

The latest detected deadlock in 'show engine innodb
status' clearly listed down the same tables.
&

time of deadlock = time of logged exception

It was Deadlock

The latest detected deadlock in 'show engine innodb
status' clearly listed down the same tables.
&

time of deadlock = time of logged exception
&

We all know - deadlock resolution is immediate hence
the exception immediately thrown.

Then Y we no see it in logs?

Then Y we no see it in logs?

some where in hibernate-spring code.

try{
 //do some db operation
}catch (Exception actual_cause){
 String new_err_msg = "lock acquisition exception";
 throw new Exception(new_err_msg);
}

i.e. the actual cause was not propagated.

Lessons learnt:

1) do not do guess work
(proove your hypothesis - reproduce error)

2) The cause/culprit mostly sits in front of you,
but you choose to ignore it.

3) Never ignore Deadlocks - (http://pt-deadlock)

4) MySQL is your friend - help her to help you.

http://www.percona.com/doc/percona-toolkit/2.1/pt-deadlock-logger.html

Thank you.

jaihind213@gmail.com

sweetweet213@twitter

mash213.wordpress.com

doodle-vishnu.blogspot.in

http://mash213.wordpress.com/
http://www.doodle-vishnu.blogspot.in

