Mamba

Transformers can be different:

- During gkv, calculating the attention score of each token (relative to every
other) is O(n*2) according to the length of the context window.

- The quadratically-growing key-value cache needs to be stored alongside the
model during inference.

- having a context window at all is rather limiting

If we can do this better, we can hopefully be better at speech and video
(context-heavy tasks)

What are State Space Models?

We can think of SSMs as blackbox mapping u(t) — y(t):

- A, B, C, and D are learnable latent parameters
- And x(t) is a solution to the linear ODE that represents the latent
representation

SSMs: Continuous, Recurrent, and Convolutional

SSMs transform into different views:

Recurrent:

xx = Axx_1 + Buk

yi = Cxi + Duy

Convolutional:

Continuous-time

lllllllll

Recurrent

X0 — Euo X1 = KBUO - Eul X9 = KzBuo = KBul —r Euz

J
Convolutional

Let’s drop the state space model idea

Let’'s say we’re just looking at the recurrent version: RNNs

Pros:

- No context window (unlike convolutional view)
- Efficient constant time inference (unlike the continuous view),

Cons:

- Not parallelizable
- Exploding/vanishing gradients (if we truly want a large effective context)

Linear RNNs

How to Parallelize?

Normal RNNs are too complicated: let's remove the activation function.

=" (ht—la Xt)

fw (h,x) = Wph + W,x

Step Efficient Scan - 0 ®

Blelloch 18 8 38 <8 5B <8 '8 °§
D @ @ @ @ @ @ ©

Blelloch scan allows us to
find the prefix sum of an
array very quickly y D +)\+ D) _D ‘D
This is only because addition \(\(\(
is associative. O\ < 'B\'B D @ @
\ \
\

Associative RNN Ilteration

This function turns out to be associative, allowing us to iterate over all inputs in the
RNN quickly (W, and W_folded into W)

f((W1,x1),(Wa,x2)) =

Associative RNN Ilteration

Note this also means we have to cache Wi Wj Wk which is d x d for each
position in the array.

That’s a lot — but luckily we can diagonalize W and simply store diagonal
elements

We're now parallelizable!

We are now parallelizable in O(n log(n)) time!

Cool facts

- P and P are learned by a model to not have to deal with and matrix inverting,

while adding more expressivity

- We still want nonlinearity so we can add a nonlinear layer after doing all the
recurrent iterations (which will be much quicker) — just like the dense layer
after attention

But exploding gradients?

Initialize initial weights very close to 1

Mamba

Selective SSM: Adding a Gate

RNNs have to hold too much info in ht. We want to be selective on what to hold

N

A

/ \
E—

H3

®

Gated MLP

—

Mamba

[]
[]

Linear
projection

Sequence
transformation

Nonlinearity
(activation or
multiplication)

Selectivity Implemented

Remember that this is essentially an RNN

Here — we define functions that parameterize W_and W_based on inputs
themselves.

Algorithm 1 SSM (S4) Algorithm 2 SSM + Selection (S6)
Input: x:(B,L,D) Input: x: (B,L,D)
Output: y: (B,L,D) Output: y: (B,L,D)
1: A: (D,N) « Parameter 1: A: (D,N) « Parameter
> Represents structured N X N matrix > Represents structured N X N matrix
2: B: (D,N) « Parameter 2: B: (B,L,N) « sg(x)
3: C: (D,N) « Parameter 3: C: (B,L,N) « sc(x)
4: A: (D) « tp(Parameter) 4: A: (B,L,D) « 7p(Parameter+sa(x))
5: A,B: (D,N) « discretize(A, A, B) 5: A, B: (B,L,D,N) « discretize(A, A, B)
6: y < SSM(A, B,C)(x) 6: y < SSM(A,B,C)(x)
> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only

7: returny 7: returny

(Introduction of L = length — time-dependent. Input-dependency — batches different)

Selectivity

“Selecting functions” are chosen where

sg(x) = Lineary(x), sc(x) = Linearn(x), sa(x) = Broadcastp(Linear;(x)), and 75 = softplus,

such that given with A= -1 and B = 1, the gate at each head ends up looking like

g = o(Linear(x;))

hy = (1 — gy)hy—1 + gex¢

Eloquent, isn’t it?

