
CMSC389E:
Digital Logic Design Through Minecraft

Fall 2020
Akilesh Praveen

Adders, Encoders, Decoders



Administrivia
● Project Submission via ELMS

○ CS Department Bureaucracy :(

● Keep checking the course website! (will be updated tonight) 
(http://www.cs.umd.edu/class/fall2020/cmsc389E/) 

http://www.cs.umd.edu/class/fall2020/cmsc389E/


Announcements
● Project 2

○ Conceptual knowledge in today’s lecture + online 
textbook

○ Project spec will be released on ELMS and course 
website tonight / Saturday



Numbers and Computers



Numbers & Computers
● Let’s talk about numbers and computers

● How do they deal with them?



Numbers & Computers
● Let’s talk about numbers and computers

● How do they deal with them?

○ In binary



Numbers & Computers
● Let’s talk about numbers and computers

● How do they deal with them?

○ In binary

● How do we deal with them?



Numbers & Computers
● Let’s talk about numbers and computers

● How do they deal with them?

○ In binary

● How do we deal with them?

○ In decimal



Numbers & Computers
● We’re going to work through creating circuits that let us

○ Manipulate binary numbers on a computer

○ Convert binary numbers to decimal (for us to work with) 

and vice versa

● READ: Digital Logic & Comp Arch in Minecraft, C3



Adders



Adders
● We all know how to add numbers



Adders
● We all know how to add numbers

○ Hopefully



Adders
● We all know how to add numbers

○ Hopefully

● How do computers add them?



Adders
● We all know how to add numbers

○ Hopefully

● How do computers add them?

○ First, think about number representation in digital logic 

circuits



Adders
● We all know how to add numbers

○ Hopefully

● How do computers add them?

○ First, think about number representation in digital logic 

circuits

● Let’s work through an example



Adders
● How would you, as a human, add the following numbers

○ 0b11101

○ 0b11011



Adders
● How would you, as a human, add the following numbers

○ 0b11101

○ 0b11011

● Let’s take it back to elementary school



Adders
● Remember, we’re working with binary



Adders
● Let’s add the first ‘column’ here



Adders
● We seem to have a ‘carry-over’ happening here



Adders
● This happens when we exceed the a 

number system’s limit with an ‘add’

● Where else during this computation 

would this occur?

○ Keep this one in mind



Half Adders



Half Adders
● Now, think about how a computer 

would do this operation



Half Adders
● Now, think about how a computer 

would do this operation

○ Let’s make it into a smaller 

problem



Half Adders
● Now, think about how a computer 

would do this operation

○ Let’s make it into a smaller 

problem

○ Adding two one bit binary 

numbers



Half Adders
● In particular, this operation right 

here is what we want to do

● Consider the possible inputs and 

outputs for an operation like this

○ How many bits in?

○ How many bits out?



Half Adders
● We want two bits input

● We want two bits output



Half Adders
● We want two bits input

○ Input number 1 (one digit)

○ Input number 2 (one digit)

● We want two bits output

○ One for the sum

○ One for the ‘carry’



Half Adders
● Turns out, generating those two output bits given our two 

inputs is pretty easy!

● READ: Digital Logic & Comp Arch in Minecraft, C3.1



Half Adders
● Here’s our truth table and logic circuit



Full Adder



Full Adders
● The Half Adder is great, but limited in functionality

● Let’s work on scaling it up

○ From adding two one digit numbers

○ To adding two n digit numbers

● How can we accomplish this?

○ Think back to our addition example



Full Adders
● In other words, our half-adder takes care of this one...



Full Adders
● But our new circuit needs to handle all of these as well



Full Adders
● Our solution?

○ Just handle a ‘carry in’ bit!

○ It turns out, that’s all we need

● READ: Digital Logic & Comp Arch in Minecraft, C3.2



Full Adders



Full Adders



Full Adders
● Q: How would doing all this sequential math actually look in 

terms of a circuit?



Full Adders
● A: Like this

○ Note that the adder determining S0 can also be a HA



Full Adders
● In terms of Minecraft, we really only need to know how to 

make a Full adder

○ A half adder is the same thing, without a carry bit

● Luckily, there’s a pretty simple way to put together a full 

adder leveraging Minecraft’s odd nuances

○ Full adder demo by Ashwath



Decoders & Encoders



Decoders & Encoders
● How will we get this data out of our computer and into an 

interpretable form?

● I.e. how can we convert this binary representation into 

decimal representation easily?



Decoders & Encoders
● This is an essential problem in digital logic

○ Pertaining to computer design

● Engineers have designed two logical circuits help us 

interface with different number systems

○ Decoder

○ Encoder



Decoders & Encoders
● Decoders convert binary signals into decimal 

representations of those signals

● Encoders convert decimal representations of signals back 

into binary

● These circuits can be generalized to different number 

systems as well



Decoders & Encoders
● Decoders: Binary to decimal

● Encoders: Decimal to binary



Decoders & Encoders
● Let’s first talk about decoders

● What would you do (as a human) if I asked you to convert 

the following binary number to decimal form?

○ 0b110



Decoders & Encoders
● Let’s first talk about decoders

● What would you do (as a human) if I asked you to convert 

the following binary number to decimal form?

○ 0b110

● Now think in terms of three wires coming in, each 

representing a digit



Decoders & Encoders
● A solution: assign a wire for each possible output

○ If the binary input is 0, turn only a certain wire on

○ If the binary input is 1, turn only another wire on

○ If the binary input is 2, turn only another wire on

○ etc.



Decoders & Encoders
● We will need more output wires than input wires



Decoders & Encoders
● We will need more output wires than input wires

● Given 3 inputs



Decoders & Encoders
● We will need more output wires than input wires

● Given 3 inputs

○ We will need 8 outputs



Decoders & Encoders
● We will need more output wires than input wires

● Given 3 inputs

○ We will need 8 outputs

● Given n inputs?



Decoders & Encoders
● We will need more output wires than input wires

● Given 3 inputs

○ We will need 8 outputs

● Given n inputs

○ We will need 2n outputs



Decoders & Encoders
● Let’s figure out our smaller example first

○ How will we take 3 input binary values and select one of 

8 outputs for them?

○ It turns out, the answer is fairly straightforward once 

you create a truth table



Decoders & Encoders
● Let’s figure out our smaller example first

○ How will we take 3 input binary values and select one of 

8 outputs for them?

○ It turns out, the answer is fairly straightforward once 

you create a truth table



Decoders & Encoders



Decoders & Encoders
● Once we’ve made our truth table, it becomes much easier 

to create a logical circuit

● Notice the clever use of input buses (we will put up another 

video about those in the near future)

READ: Digital Logic & Comp Arch in Minecraft, C3.3



Decoders & Encoders



Decoders & Encoders
● Suppose we wanted to go the other way around

● From decimal to binary

○ Why?

● READ: Digital Logic & Comp Arch in Minecraft, C3.5

●



Decoders & Encoders
● Encoders are essentially the complement to decoders

○ Suppose this time that we had 8 input wires, each 

signifying numbers from 0-7

○ Our goal now is to decide binary output based on which 

wire out of the 8 is ‘on’



Decoders & Encoders
● The logical circuit is strikingly similar to the decoder

● First, let’s look at the truth table



Decoders & Encoders
● Now, the circuit

READ: Digital Logic

 & Comp Arch in 

Minecraft, C3.4



Buses Demo



Project 2


