
CSE 373 SP21 Section 6
Graphs

MicroTeach: Graph Intro

Graphs

Graph: A set of nodes (also called vertices) connected pairwise by edges.

Graph Terminology

● Graph:
○ Set of vertices, a.k.a. nodes.
○ Set of edges: Pairs of vertices.
○ Vertices with an edge between are

adjacent.
○ The degree of a vertex is the number

of edges directly connected to it.

● A path is a sequence of vertices connected
by edges.

● A cycle is a path whose first and last
vertices are the same.
○ A graph with a cycle is ‘cyclic’.

Some Graph Types

a

b

d

c

a

b

d

c

e

a

b

d

c

a

b

d

c

Acyclic:

Cyclic:

Directed Undirected

Graph Applications

● Physical Maps
○ Airline maps
○ Traffic

● Relationships
○ Social media graphs
○ Code bases

● Influence
○ Biology

● Related topics
○ Web Page Ranking
○ Wikipedia

● Many more...

MicroTeach: DFS/BFS

BFS Pseudocode (simplified)

 Queue q

 add Vertex start to q

 mark start as discovered

 while q is not empty {

 Vertex from = q.remove()

 for each edge {from,d} {

 if d is not discovered {

 add d to q

 mark d as discovered

 }

 }

 }

BFS Pseudocode
bfs(Graph graph, Vertex start) {
 // stores the remaining vertices to visit in the BFS
 Queue<Vertex> perimeter = new Queue<>();

 // stores the set of discovered vertices so we don't revisit them multiple times
 Set<Vertex> discovered = new Set<>();

 // kicking off our starting point by adding it to the perimeter
 perimeter.add(start);
 discovered.add(start);
 while (!perimeter.isEmpty()) {
 Vertex from = perimeter.remove();
 for (E edge : graph.outgoingEdgesFrom(from)) {
 Vertex to = edge.to();
 if (!discovered.contains(to)) {
 perimeter.add(to);
 discovered.add(to);
 }
 }
 }
}

DFS Pseudocode (simplified)

 Stack s

 add Vertex start to s

 while s is not empty {

 Vertex from = s.remove()

if from is not discovered {

 for each edge {from,d} {

 add d to s

 }

mark from as discovered

}

 }
* Fixes the “bug” Kasey mentioned in Lecture 17!
Can you spot the change? :)

DFS Pseudocode
dfs(Graph graph, Vertex start) {
 // stores the remaining vertices to visit in the DFS
 Stack<Vertex> perimeter = new Stack<>();

 // stores the set of discovered vertices so we don't revisit them multiple times
 Set<Vertex> discovered = new Set<>();

 // kicking off our starting point by adding it to the perimeter
 perimeter.add(start);

 while (!perimeter.isEmpty()) {
 Vertex from = perimeter.remove();
 if (!discovered.contains(from)) {
 for (E edge : graph.outgoingEdgesFrom(from)) {
 Vertex to = edge.to();
 perimeter.add(to);
 }
 discovered.add(from);
 }
 }
}

* Fixes the “bug” Kasey mentioned in Lecture 17!
Can you spot the change? :)

Problem 3:
Simulating BFS

Simulating BFS

Y

S

Z

T

X

Vertex Pred Processed
(?)

S --

T --

X --

Y --

Z --

S

Queue of Vertices to Explore:

Begin with the start vertex in
the queue!

Simulating BFS

Y

S

Z

T

X

Vertex Pred Processed
(?)

S -- ✓

T --

X --

Y --

Z `--Queue of Vertices to Explore:

Pop S to explore!

Simulating BFS

Y

S

Z

T

X

Vertex Pred Processed
(?)

S -- ✓

T S

X --

Y S

Z --

T Y

Queue of Vertices to Explore:

Push neighbors of S onto queue to be explored

Y

S

Z

T

X

Vertex Pred Processed
(?)

S -- ✓

T S ✓

X --

Y S

Z --

Y

Queue of Vertices to Explore:

Pop T to explore!

Simulating BFS

Y

S

Z

T

X

Vertex Pred Processed
(?)

S -- ✓

T S ✓

X T

Y S

Z T

Y X Z

Queue of Vertices to Explore:

Push neighbors of T onto queue to be explored

Simulating BFS

Y

S

Z

T

X

Vertex Pred Processed
(?)

S -- ✓

T S ✓

X T

Y S ✓

Z T

X Z

Queue of Vertices to Explore:

Pop Y to explore!

Simulating BFS

Y

S

Z

T

X

Vertex Pred Processed
(?)

S -- ✓

T S ✓

X T

Y S ✓

Z T

(Nothing happens!)

X Z

Queue of Vertices to Explore:

Simulating BFS

Y

S

Z

T

X

Vertex Pred Processed
(?)

S -- ✓

T S ✓

X T ✓

Y S ✓

Z T

Z

Queue of Vertices to Explore:

Pop X to explore!

Simulating BFS

Y

S

Z

T

X

Vertex Pred Processed
(?)

S -- ✓

T S ✓

X T ✓

Y S ✓

Z T

Z

Queue of Vertices to Explore:

(Nothing happens!)

Simulating BFS

Y

S

Z

T

X

Vertex Pred Processed
(?)

S -- ✓

T S ✓

X T ✓

Y S ✓

Z T ✓Queue of Vertices to Explore:

Pop Z to explore!

Simulating BFS

Y

S

Z

T

X

Vertex Pred Processed
(?)

S -- ✓

T S ✓

X T ✓

Y S ✓

Z T ✓

(Nothing happens!)

Queue of Vertices to Explore:

Simulating BFS

Y

S

Z

T

X

Vertex Pred Processed
(?)

S -- ✓

T S ✓

X T ✓

Y S ✓

Z T ✓
Resulting SPT

Simulating BFS

How do we interpret the final table?

Vertex Pred Processed
(?)

S -- ✓

T S ✓

X T ✓

Y S ✓

Z T ✓

To check if there exists a path from a given start node to given
target…

To find the resulting shortest paths tree (SPT)…
● For each vertex, backtrace from its predecessors until you

reach the source vertex
● This is the same as getting the shortest path from the

source to each vertex
● By combining the shortest paths to each vertex in the

graph, you will get the SPT for the graph

● Locate the target vertex in the table
● Backtrace through its predecessors
● If the start vertex is one of its predecessors, then there

exists a path between them, otherwise there does not

Simulating BFS

Problem 2:
Graph Traversal

D

H

A
F

E

C

B

G

If we traverse this using breadth-first
search, what are the two possible
orderings of the nodes we visit?

What if we use depth-first search

Leetcode Problem: Find if Path Exists
(https://leetcode.com/problems/find-if-path-exists-in-graph/)

Leetcode!

Before coding the solution…

1. Read the problem in its entirety

2. Ensure you understand any edge cases

3. Think about the different possible solutions

a. You will most likely start thinking about the brute force solution first, and that’s okay!

b. Consider runtime (and memory) complexity

i. Most likely in terms of Big-O

4. Write pseudocode

5. Code out solution

6. Test Solution

7. Optimize -> repeat steps (3-8)

https://www.pcmag.com/encyclopedia/term/brute-force-programming

MicroTeach: Dijkstra’s

Dijkstra’s Algorithm: single-pair-shortest-path

● Pathfinding on a weighted graph!

● Main idea: find shortest
path/shortest distance from start
node in graph to every other node.

● Uses a Priority Queue, where
priorities of nodes are their distance
from the start node

● We pull the closest node off the
queue each iteration, and update the
distances for its adjacent nodes.
Then repeat.

Dijkstra’s Pseudocode

Dijkstra(Graph G, Vertex source)
initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Q: How to get the shortest path?

A: After running Dijkstra, start from the target node and follow the backpointers!

GetPath(Graph G, Vertex source, Vertex target)
 // We never reached the target :(
 if (target.dist == INFINITY)
 return null

 path = []
 curNode = target
 path.add_back(target)

 while(curNode != source)
 curNode = curNode. predecessor
 path.add_back(curNode)

 // If we want the path to go from source -> goal.
 return path.reversed()

Problem 4A: Dijkstra

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 --

T inf --

X inf --

Y inf --

Z inf --

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf --

X inf --

Y inf --

Z inf --

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf 6 S

X inf --

Y inf 7 S

Z inf --

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf 6 S ✓

X inf --

Y inf 7 S

Z inf --

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf 6 S ✓

X inf 11 T

Y inf 7 S

Z inf 10 T

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf 6 S ✓

X inf 11 T

Y inf 7 S ✓

Z inf 10 T

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf 6 S ✓

X inf 11 10 T Y

Y inf 7 S ✓

Z inf 10 T

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf 6 S ✓

X inf 11 10 T Y ✓

Y inf 7 S ✓

Z inf 10 T

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf 6 S ✓

X inf 11 10 T Y ✓

Y inf 7 S ✓

Z inf 10 T

(Nothing happens!)

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf 6 S ✓

X inf 11 10 T Y ✓

Y inf 7 S ✓

Z inf 10 T ✓

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf 6 S ✓

X inf 11 10 T Y ✓

Y inf 7 S ✓

Z inf 10 T ✓
(Nothing happens!)

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf 6 S ✓

X inf 11 10 T Y ✓

Y inf 7 S ✓

Z inf 10 T ✓

Problem 4A: Dijkstra

Y

S

Z

T

X

6

7
8

9 7

3

2

5

4

Vertex Distance Pred Processed
(?)

S 0 -- ✓

T inf 6 S ✓

X inf 11 10 T Y ✓

Y inf 7 S ✓

Z inf 10 T ✓
Resulting SPT

Why It Works - Understanding Dijkstra Invariants

Invariants

predecessor[v]: best known predecessor of v.

distTo[v]: best known distance of s to v.

PQ maintains vertices based on distTo.

Important properties

Always visits vertices in order of total distance from source.

Problem 6: DJ Kistra

Problem 6

Problem 6A

(a) Describe a graph you could construct to help you solve the
problem. At the very least you’ll want to mention what the vertices
and edges are, and whether the edges are weighted or unweighted
and directed or undirected.

Problem 6A
Q: How do we get from Shake It
Off to Wildest Dreams while
obeying the rule:

Two consecutive songs’
tempos must differ by no more
than 10 beats per minute (BPM)

Shake It Off

Wildest Dreams

Problem 6A

Shake
It Off

Let vertices be songs!

 Love
 Song

 22

Lover Wildest
Dreams

But how do we know if two
songs’ tempos differ by more
than 10 BPM?

Problem 6A

Shake
It Off
150 BPM

Include BPM in vertices!

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Storing multiple pieces of
information in Vertex or Edge
Objects is often useful.

Problem 6A

Shake
It Off
150 BPM

Q: What are our edges?

We know we want to slow
down the tempo and create a
path between Shake It Off and
Wildest Dreams.

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Problem 6A

Shake
It Off
150 BPM

Let edges represent
valid song transitions!

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Allow the DJ to play the next
song only if its tempo is
slower and within 10 BPM of
the current song.

Problem 6A

Shake
It Off
150 BPM

Let edges represent
valid song transitions!

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Allow the DJ to play the next
song only if its tempo is
slower and within 10 BPM of
the current song.

valid?

Problem 6A

Shake
It Off
150 BPM

Let edges represent
valid song transitions!

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Directed or Undirected?

Directed: We don’t want to play a song we
already played since it has a faster tempo
and is farther away from Wildest Dreams.

Problem 6A

��

��

Can we accomplish the task with the graph model we’ve built? Let’s check.

There’s more information we haven’t used. Does the length of the songs help us?

We don’t have a way to prioritize between different possible song transitions!

Problem 6A

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Q: Once we have edges, how
do we know which path
between Shake It Off and
Wildest Dreams will take the
least amount of time?

Looks like we need to encode
more information in our graph.

Problem 6A

Shake
It Off
150 BPM

Let edge weights be the
length of the next song!

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Let’s think ahead: why does this help
us decide which path will take the
shortest amount of time?

We’ll use this information later when we
run an algorithm on our graph to find
the list of songs that take the least time.

237 sec.

Problem 6A

Shake
It Off
150 BPM

Let edge weights be the
length of the next song!

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Which algorithm can make use of edge
weights to give us a shortest path?

237 sec.

Dijkstra’s!

Problem 6A

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Now our graph model has
everything it needs to find the
shortest path between Shake It
Off and Wildest Dreams!

237 sec.

Vertices: song and BPM

Edges: valid song transitions

Weights: next song length

Problem 6B

(b) Describe an algorithm to construct your graph from the previous
part. You may assume your songs are stored in whatever data
structure makes this part easiest. Assume you have access to a
method makeEdge(v1, v2, w) which creates an edge from v1 to
v2 of weight w.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

valid?

Let’s continue making edges
and see if we can turn the
process into an algorithm.

237 sec.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Allow the DJ to play the next
song only if its tempo is
slower and within 10 BPM of
the current song.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Allow the DJ to play the next
song only if its tempo is
slower and within 10 BPM of
the current song.

valid?

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Allow the DJ to play the next
song only if its tempo is
slower and within 10 BPM of
the current song.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Allow the DJ to play the next
song only if its tempo is
slower and within 10 BPM of
the current song.valid?

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Allow the DJ to play the next
song only if its tempo is
slower and within 10 BPM of
the current song.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Algorithm: Check every pair
of vertices and add an edge if
it’s valid.

valid?

valid?

valid?
valid?

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Algorithm: Check every pair
of vertices and add an edge if
it’s valid.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Algorithm: Check every pair
of vertices and add an edge if
it’s valid.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

205 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Algorithm: Check every pair
of vertices and add an edge if
it’s valid.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

205 sec.

Are these valid?

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Algorithm: Check every pair
of vertices and add an edge if
it’s valid.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

205 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Algorithm: Check every pair
of vertices and add an edge if
it’s valid.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

205 sec.

187 sec.

Are these valid?

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Algorithm: Check every pair
of vertices and add an edge if
it’s valid.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

205 sec.

187 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Algorithm: Check every pair
of vertices and add an edge if
it’s valid.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

205 sec.

187 sec.

222 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Algorithm: Check every pair
of vertices and add an edge if
it’s valid.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

205 sec.

187 sec.

222 sec.

Are these valid?

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Algorithm: Check every pair
of vertices and add an edge if
it’s valid.

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

205 sec.

187 sec.

222 sec.

Problem 6B

Shake
It Off
150 BPM

 Love
 Song
140 BPM

 22
150 BPM

Lover
130 BPM

Wildest
Dreams
120 BPM

Ta-da! This is our graph :)

Vertices: song and BPM
Edges: valid song transitions
Weights: next song length

237 sec.

205 sec.

187 sec.

222 sec.

Problem 6B

Problem 6C

(c) Describe an algorithm you could run on the graph you just
constructed to find the list of songs you can play to get to “Wildest
Dreams” the fastest without disappointing the crowd.

Problem 6D

(d) What is the running time of your plan to find the list of songs?
You should include the time it would take to construct your graph
and to find the list of songs. Give a simplified big-O running time in
terms of whatever variables you need.

Problem 6D
How long did it take to construct our graph?

We then run Dijkstra’s starting from Shake It
Off. What’s the runtime of Dijkstra’s?

O(S2)

O(E*log(S) + S*log(S))

O(S2 + E*log(S) + S*log(S))

What’s the total runtime to find the list of songs the DJ should play?

Is this simplified?

S2 dominates S*log(S)
so we can ignore the
smaller term!

Total runtime:
O(S2 + E*log(S))

