Project: MySQL and
Flask

Mark Fontenot, PhD
Northeastern University

‘Taking a Step Back

e \Where is all this stuff coming from?

e |'m giving you bite-sized chunks of integrated material
Python

Flask

MySQL

Flask <-> MySQL

o Docker

e How do you learn more?

O O O O

Project Architecture

flaskext.mysql

Your Laptop @
Docker Fontenot’s AppSmith Server

/ User Type A
/M(>

%
—>

User Type B
\ !

User Type C

Starter Code for Today

On the Webpage, you can d/| the starter project:
e Flask + MySQL
b In Class Starter Project for Flask + My SQL

Or click > < to download.

https://www.dropbox.com/s/7xwb0qva1e1flyg/09-flask_mysql_connection_student.zip?dl=0

Step 1: Update the Flask App Dockerfile

e |n order for the Flask app to connect to MySQL securely, the server it

runs on will need some additional libraries.
e Add the line in the red box below to the _app/Dockerfile and save.

FROM python:3.9-alpine

make a folder inside the container named /usr/src/app
#RUN mkdir /usr/src/app/

set the new folder we just created as the working directory
WORKDIR /usr/src/app/

‘ RUN apk add gcc musl-dev python3-dev libffi-dev openssl-dev

copy everything from the current folder (the one where this

NDnrlkarfila 1ivac) intn tha fnldar uwa rraatad ahnuve

Step 2: Update requirements.txt

e \We need 2 additional Python libraries to connect to MySQL.:
flask-mysql and cryptography.

e Open the_app/requirements.txt and add the two additional
lines shown below.

1 flask

2 | flask-mysqgl
cryptographﬂ

Step 3: Create a Database Bootstrap File

1 CREATE DATABASE cool_db;
2 CREATE USER 'webapp'@'s' IDENTIFIED BY 'abc123';
3 GRANT ALL PRIVILEGES ON cool_db.* TO 'webapp'@'S%';
e C(Create a new folder & FITSH PRIV EGES:
5
named db—bOOtStrap 6 -- Move into the database we just created.
7 -- TODO: If you changed the name of the
at the Same Ievel as 8 -- database above, you need to change it here too.
m a) 9 USE cool_db;
y_app b
e C(Create a new file inside 11 - Put your DDL
12 CREATE TABLE test_table (
that new folder called 13 name VARCHAR(20),
14 color VARCHAR(10)
create_db.sql 15);

o Add the SQI_ Oﬂ the 17 -- Add sample data.
18 INSERT INTO test_table

I’Ight tO that ﬂle aﬂd 19 (name, color)

20 VALUES

Save |t 21 ('dev', 'blue'),
22 ('pro', 'yellow'),
23 ('junior', 'red');

Step 4: Update the docker—compose.yml

20 v
24 # basing it on mysql v.8.0.x
e Add a volume command 22 image: mysql:8
: : . 23 # mapping container port 3306 to host port 3306
“ne In db service Of 24 # (note: 3306 is the default mysql port)
docker-compose.yml 25 + ports:
27
db_bOOtStrap f0|der 28 # anything in (or mounted in) /docker-entrypoint-initdb.d in the container
into the container as 29 # will automatically be executed when the container is created
30 v volumes:
read_only' 31 - ./db_bootstrap:/docker-entrypoint-initdb.d:ro
e The MySQL Docker 32
Container iS Se’[up to 33 # Provide an environtment variable containing
. 34 # whatever we want the root password to be
aUtomatlcaHy eXGCUte 35 # NOTE: This is for demo purposese only.
any SQL files that are 36 # abc123 is a TERRIBLE password and you wouldn't ever
. 37 # want to store the root password in a shared public file
mapped tO or COpIed 38 v environment:
INnto 39 - MYSQL_ROOT_PASSWORD=abc123
/docker-entrypoint-ini b

tdb.d

Pause: Check that things are working

- Stop any running containers
- docker compose down
- docker compose build
- docker compose up

- Do you see any errors?
- Check both containers

- From DataGrip, connect to cool_db and select all the data
from the table within.

Pause: New Docker Command

You can spin up only one service from a docker-compose.yml

file by putting the name of the service at the end of
docker compose up

Service names in the docker-compose.yml
q | b4 5 services:
ocKer compose up d 6 my-api-service:

docker compose up my-apl-Service 19 # creating a new servic

20 db:

Step 5: Setting up a connection in Python

In the_app/app.py:

from flask import Flask, jsonify
from flaskext.mysql import MySQL

create a flask object
app = Flask(__name__)

add db config variables to the app object
app.config['"MYSQL_DATABASE_HOST'] = 'db'
app.config['"MYSQL_DATABASE_PORT'] = 3306
app.config['"MYSQL_DATABASE_USER'] = 'webapp'
app.config['MYSQL_DATABASE_PASSWORD'] = 'abc123'
app.config['"MYSQL_DATABASE_DB'] = 'cool_db'

create the MySQL object and connect it to the
Flask app object

db_connection = MySQL()
db_connection.init_app(app)

If you had to change the port
in DataGrip to connect to
" MySQL, change it here, too.

Step 6: Add a Route to Retrieve Data

adapp.route('/db_test')

def db_testing():
cur = db_connection.get _db().cursor()
cur.execute('select * from test table')
row_headers = [x[0] for x in cur.description]
json_data = []
theData = cur.fetchall()
for row in theData:

json_data.append(dict(zip(row_headers, row)))

return jsonify(json_data)

Step 7: Test the Route 1n your Browser.

1. Stop the containers. ¢ 5> C 0 O 127.001:9000/db_test

2. docker compose down [

3. docker compose build "' ol Ubiug¥,

4. docker compose up Tt

5. In browser, go to e B
127.0.0.1:9000/db_test e g

color: "red",

name: "junior"

