
Project: MySQL and
Flask

Mark Fontenot, PhD
Northeastern University

Taking a Step Back

● Where is all this stuff coming from?
● I’m giving you bite-sized chunks of integrated material

○ Python
○ Flask
○ MySQL
○ Flask <-> MySQL
○ Docker

● How do you learn more?

2

Project Architecture
Your Laptop

Docker Fontenot’s AppSmith Server

User Type B

User Type A

User Type C

flaskext.mysql

Starter Code for Today

4

On the Webpage, you can d/l the starter project:

Or click > here < to download.

https://www.dropbox.com/s/7xwb0qva1e1flyg/09-flask_mysql_connection_student.zip?dl=0

Step 1: Update the Flask App Dockerfile

● In order for the Flask app to connect to MySQL securely, the server it
runs on will need some additional libraries.

● Add the line in the red box below to the_app/Dockerfile and save.

5

Step 2: Update requirements.txt

● We need 2 additional Python libraries to connect to MySQL:
flask-mysql and cryptography.

● Open the_app/requirements.txt and add the two additional
lines shown below.

6

Step 3: Create a Database Bootstrap File

● Create a new folder
named db_bootstrap
at the same level as
my_app.

● Create a new file inside
that new folder called
create_db.sql

● Add the SQL on the
right to that file and
save it.

7

Step 4: Update the docker-compose.yml
● Add a volume command

line in db service of
docker-compose.yml
to map the
db_bootstrap folder
into the container as
read-only.

● The MySQL Docker
container is setup to
automatically execute
any SQL files that are
mapped to or copied
into
/docker-entrypoint-ini
tdb.d

8

Pause: Check that things are working

- Stop any running containers
- docker compose down
- docker compose build
- docker compose up

- Do you see any errors?
- Check both containers

- From DataGrip, connect to cool_db and select all the data
from the table within.

9

Pause: New Docker Command

You can spin up only one service from a docker-compose.yml
file by putting the name of the service at the end of
docker compose up

docker compose up db
docker compose up my-api-service

10

Service names in the docker-compose.yml

Step 5: Setting up a connection in Python
In the_app/app.py:

11

from flask import Flask, jsonify
from flaskext.mysql import MySQL

create a flask object
app = Flask(__name__)

add db config variables to the app object
app.config['MYSQL_DATABASE_HOST'] = 'db'
app.config['MYSQL_DATABASE_PORT'] = 3306
app.config['MYSQL_DATABASE_USER'] = 'webapp'
app.config['MYSQL_DATABASE_PASSWORD'] = 'abc123'
app.config['MYSQL_DATABASE_DB'] = 'cool_db'

create the MySQL object and connect it to the
Flask app object
db_connection = MySQL()
db_connection.init_app(app)

If you had to change the port
in DataGrip to connect to
MySQL, change it here, too.

Step 6: Add a Route to Retrieve Data

12

@app.route('/db_test')
def db_testing():
 cur = db_connection.get_db().cursor()
 cur.execute('select * from test_table')
 row_headers = [x[0] for x in cur.description]
 json_data = []
 theData = cur.fetchall()
 for row in theData:
 json_data.append(dict(zip(row_headers, row)))
 return jsonify(json_data)

Step 7: Test the Route in your Browser.

1. Stop the containers.
2. docker compose down
3. docker compose build
4. docker compose up
5. In browser, go to

127.0.0.1:9000/db_test

13

