1 of 18

Basics of Differential Equations

SEMESTER- II (BMG2CC1B)

2 of 18

 

3 of 18

INDEX

  1. Continuity of f(x, y)
  2. Differentiability of f(x, y)
  3. Stationary Point, Saddle Point & Sufficient Condition for the existence of Extreme Value
  4. Extreme Values of Functions of Two variables
  5. Examples
  6. References

4 of 18

 

5 of 18

 

6 of 18

 

7 of 18

 

8 of 18

 

 

 

 

 

 

 

 

  • Differentiability of the given function at (0, 0) :

 

9 of 18

 

 

 

 

 

10 of 18

EXTREME VALUES OF FUNCTIONS OF TWO VARIABLES

 

 

11 of 18

 

  • SADDLE POINT:

In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local

extremum of the function.

 

12 of 18

 

 

 

 

 

 

 

13 of 18

 

 

 

 

14 of 18

 

 

 

 

15 of 18

 

 

 

 

 

 

 

 

16 of 18

 

 

 

 

 

17 of 18

REFERENCES:

  • Advanced Mathematical Analysis (Utpal Chatterjee)
  • Mathematical Analysis (Sitansu Bandyopadhyay)
  • Saddler, David; Shea, Julia; Ward, Derek (2011), "12 B Stationary Points and Turning Points", Cambridge 2 Unit Mathematics Year 11, Cambridge University Press, p. 318, ISBN 9781107679573.
  • W. Fleming (1977). Functions of Several Variables. Undergraduate Texts in Mathematics (2nd ed.). Springer. ISBN 0-387-902-066.
  • R. Wrede; M.R. Spiegel (2010). Advanced Calculus (3rd ed.). Schaum's Outline Series. ISBN 978-0-07-162366-7.

18 of 18

THANK YOU