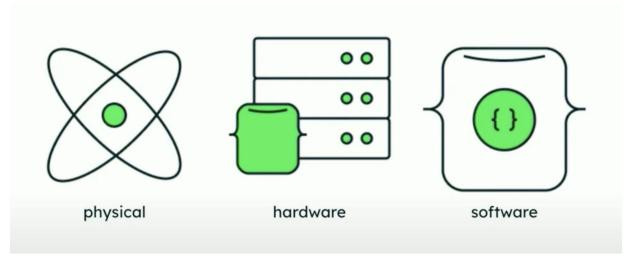
# Lecture 2: Relational model part 1

Quan Nguyen, Ph.D.

Assistant Professor

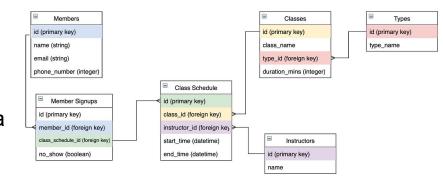
Department of Computing Science




# Learning objectives

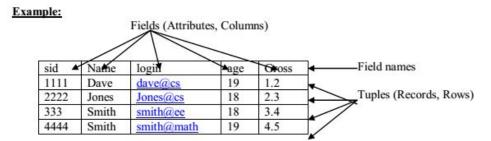
- Understand the components and properties of relations
- Differentiate and apply key types
- Apply integrity rules

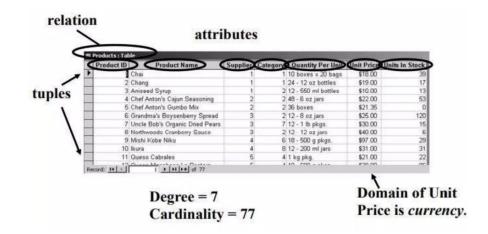
# Why do we model?


We model to face constraints and answer to constraints So we can store, query, and use resources optimally!



## Relational model


## **Objectives**


- To promote high degree of data independence.
- Eliminate redundancy and consistency problems.
- Ease of use of DBA as well as normal users.
- To provide a community view of the data, so that a wide variety of users can interact with a common model.



## Relational database

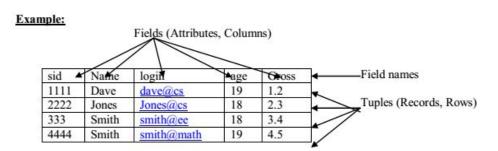
- 1. **Relation**: A relation is nothing but a table with rows and columns.
- 2. **Attributes**: Attributes are the properties that define a relation.
- Tuple: Each row in the relation is known as a tuple.
- 4. **Domain**: A domain is a unique set of values permitted for an attribute in a table.
- 5. **Degree**: The number of attributes in a relation.
- Cardinality: The number of tuples in a relation.





## Properties of relational database

### **Unique Relation Name:**


 Each relation (table) must have a unique name within the database.

### Atomic Values (Single Values per Cell):

Each cell in a relation contains exactly one value.

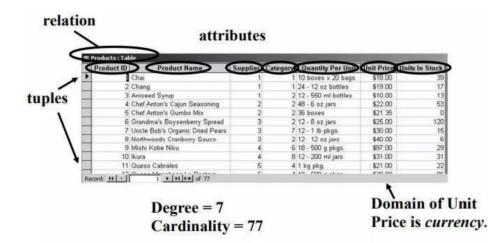
### **Distinct Attribute Names:**

 Each attribute (column) within a relation must have a unique name. No two columns can share the same name within the same relation.



## Properties of relational database

### **Unique Tuples (Rows)**:


Order of Tuples and Attributes is Irrelevant:

#### Attribute Domain

 Each attribute (column) in a relation is associated with a domain, which is the set of permissible values that the attribute can hold. For example, a column for "age" might have a domain restricting the values to integers between 0 and 120.

#### Null Values:

 A relation can contain NULL values for attributes, representing missing or unknown data. However, primary keys cannot contain null values to ensure uniqueness.



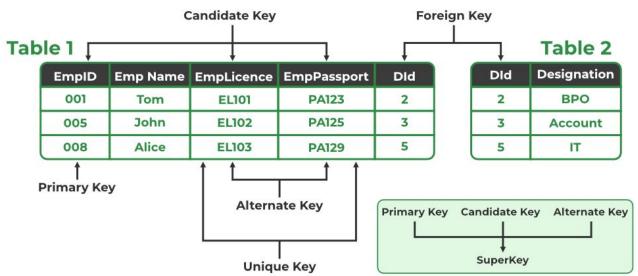
## Exercise 1

Discuss in pair, give example of the following terms:

- 1. Relation
- 2. Attributes
- 3. Tuple
- 4. **Domain**
- 5. **Degree**
- 6. **Cardinality**

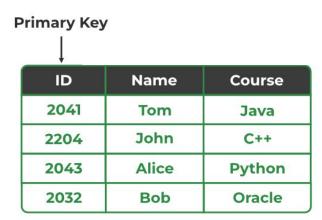
### **Books Table**

| BookID | Title                   | Genre       | Price | AuthorID |
|--------|-------------------------|-------------|-------|----------|
| 1      | The Great Gatsby        | Fiction     | 10.99 | 101      |
| 2      | To Kill a Mockingbird   | Fiction     | 8.99  | 102      |
| 3      | A Brief History of Time | Non-Fiction | 15.99 | 103      |


### **Authors Table**

| AuthorID | FirstName | LastName   |
|----------|-----------|------------|
| 101      | F. Scott  | Fitzgerald |
| 102      | Harper    | Lee        |
| 103      | Stephen   | Hawking    |

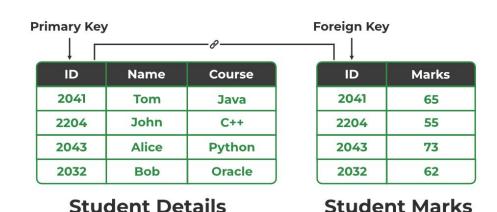
## Keys


In a relational database model, keys are used to uniquely identify records and establish relationships between tables.

- Primary Key
- Foreign Key
- Candidate Key
- Composite Key
- Super Key



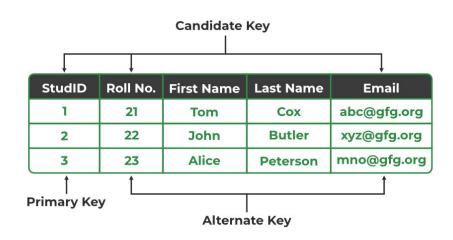
## Primary key


- A primary key is a column or a set of columns that uniquely identifies each row in a table.
- Each table can have only one primary key.
- Primary keys cannot contain NULL values.



**Student Details** 

# Foreign key

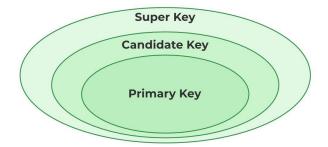

- A foreign key is a column or a set of columns in one table that refers to the primary key in another table.
- Foreign keys establish relationships between tables.
- They ensure referential integrity by enforcing that the value in the foreign key column must match a value in the primary key column of the referenced table.



## Candidate key

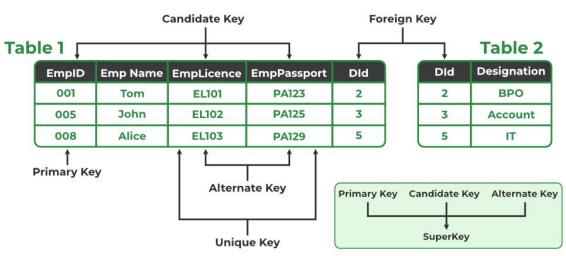
- A candidate key is a column or a set of columns that can uniquely identify any row in a table.
- A table can have multiple candidate keys.
- One of the candidate keys is chosen as the primary key.

Alternate keys are any candidate keys which are not a primary key




# Superkey

- A super key is a set of one or more columns (attributes) that can uniquely identify a row in a table.
- It may contain additional attributes that are not necessary for unique identification.
- There can be many super keys in a table.


| StudentID | FirstName | LastName | Email               | CourseID |
|-----------|-----------|----------|---------------------|----------|
| 1         | Alice     | Smith    | alice@example.com   | 101      |
| 2         | Bob       | Johnson  | bob@example.com     | 102      |
| 3         | Charlie   | Brown    | charlie@example.com | 101      |

- Super Keys: StudentID, Email, StudentID, Email, StudentID, FirstName
- Candidate Keys: StudentID, Email
- **Primary Key**: StudentID (if chosen as the primary key)



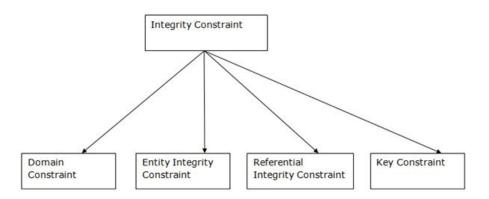
# Composite key

- A key that consists of two or more columns.
- Acts as a primary key if it doesn't exist
- It is used when a single column is not sufficient to uniquely identify a row.



## Exercise 2

# Discuss in pair, give example of the following terms:


- 1. Primary Key
- 2. Foreign Key
- 3. Candidate Key
- 4. Composite Key
- 5. Super Key

#### **Books Table**

| BookID | Title                   | Genre       | Price | AuthorID |
|--------|-------------------------|-------------|-------|----------|
| 1      | The Great Gatsby        | Fiction     | 10.99 | 101      |
| 2      | To Kill a Mockingbird   | Fiction     | 8.99  | 102      |
| 3      | A Brief History of Time | Non-Fiction | 15.99 | 103      |

#### **Authors Table**

| AuthorID | FirstName | LastName   |
|----------|-----------|------------|
| 101      | F. Scott  | Fitzgerald |
| 102      | Harper    | Lee        |
| 103      | Stephen   | Hawking    |



| Stud_ID | First   | Last    | Email               | CourseID |
|---------|---------|---------|---------------------|----------|
| 1       | Alice   | Smith   | alice@example.com   | 101      |
| 2       | Bob     | Johnson | bob@example.com     | 102      |
| 3       | Charlie | Brown   | charlie@example.com | 101      |

| CourseID | CourseName       |
|----------|------------------|
| 101      | Computer Science |
| 102      | Mathematics      |
| 103      | Physics          |

## **Entity Integrity**

 Rule: Each table must have a primary key, and the primary key must be unique and not null.

### • Example:

- In the Students table,
   StudentID is the primary key.
   Each StudentID must be unique and not null.
- In the Courses table, CourseID is the primary key. Each
   CourseID must be unique and not null.

| Stud_ID | First   | Last    | Email               | CourseID |
|---------|---------|---------|---------------------|----------|
| 1       | Alice   | Smith   | alice@example.com   | 101      |
| 2       | Bob     | Johnson | bob@example.com     | 102      |
| 3       | Charlie | Brown   | charlie@example.com | 101      |

| CourseID | CourseName       |
|----------|------------------|
| 101      | Computer Science |
| 102      | Mathematics      |
| 103      | Physics          |

## **Referential Integrity**

- **Rule**: A foreign key must reference a valid, existing primary key in another table.
- Example:
  - In the Students table, CourseID is a foreign key that references CourseID in the Courses table. Every CourseID in the Students table must match a valid CourseID in the Courses table.
  - What happen if you try to insert a student with CourseID 104?

| Stud_ID | First   | Last    | Email               | CourseID |
|---------|---------|---------|---------------------|----------|
| 1       | Alice   | Smith   | alice@example.com   | 101      |
| 2       | Bob     | Johnson | bob@example.com     | 102      |
| 3       | Charlie | Brown   | charlie@example.com | 101      |

| CourseID | CourseName       |
|----------|------------------|
| 101      | Computer Science |
| 102      | Mathematics      |
| 103      | Physics          |

## **Domain Integrity**

 Rule: All values in a column must fall within a defined domain (set of permissible values).

### • Example:

- The Email column in the Students table should only contain valid email addresses.
- The CourseID column in the Students table should only contain integer values that match the CourseID in the Courses table.

| Stud_ID | First   | Last    | Email               | CourselD |
|---------|---------|---------|---------------------|----------|
| 1       | Alice   | Smith   | alice@example.com   | 101      |
| 2       | Bob     | Johnson | bob@example.com     | 102      |
| 3       | Charlie | Brown   | charlie@example.com | 101      |

| CourseID | CourseName       |
|----------|------------------|
| 101      | Computer Science |
| 102      | Mathematics      |
| 103      | Physics          |

### **User-defined Integrity**

• **Rule**: Custom rules defined by the user to enforce specific business requirements.

### • Example:

- A rule that ensures a student's
   FirstName and LastName are not empty.
- A rule that ensures the CourseID in the Students table must be one of the CourseID values in the Courses table.

## Exercise 3

Discuss in pair, give example of when this integrity rule is being violated

- 1. Entity integrity
- 2. Referential integrity
- 3. Domain integrity
- 4. User-defined integrity

#### **Books Table**

| BookID | Title                   | Genre       | Price | AuthorID |
|--------|-------------------------|-------------|-------|----------|
| 1      | The Great Gatsby        | Fiction     | 10.99 | 101      |
| 2      | To Kill a Mockingbird   | Fiction     | 8.99  | 102      |
| 3      | A Brief History of Time | Non-Fiction | 15.99 | 103      |

#### **Authors Table**

| AuthorID | FirstName | LastName   |
|----------|-----------|------------|
| 101      | F. Scott  | Fitzgerald |
| 102      | Harper    | Lee        |
| 103      | Stephen   | Hawking    |

## Attendance

Scan the QR code below or use the password listed below to take your attendance

Passcode: 604n2m

