Al2ES Coding Standards

Group Lead: David John Gagne
December 16, 2020

Introduction

e AI2ES members will be developing software libraries collaboratively across
multiple groups and institutions

e Ideally we want to share software across the institute and release packages
to the public

e Coding standards will enable us to encourage/enforce a level of software
quality across all shared repositories

e However, some standards are easier to implement and enforce than others

e Goals:

o Discuss potential types of standards we should aim to encourage across the institute
o What is necessary vs. nice to have vs. overly burdensome?

Python Packaging Structure

e package-name/

O

README.md: Contains description of package, installation

and use instructions

setup.py: Script for installing the package

LICENSE: License text (CCO0)

environment.yml: contains list of dependencies for the

conda installer

requirements.txt: list of packages for pip installer

package/: Directory containing all python module files (.py)
m test/: Contains all unit test files

doc/: Documentation directory

scripts/: Contains helper scripts and executable programs

notebooks/: Contains jupyter notebooks

Source: Amazon

Coding Style

WILLIAM

STRUNK=
=WHITE

—anll @ farle Book, small enonpl and @ ingprortunt m-ql:
A carry o yosr pockies, an { oarry wine.”

-—(ImrhiOmnd

ELE MENTS
" SHiE

FOURTH EDITION

Goal: ensure that all code follows the same
formatting conventions for a consistent look and
meaning across packages

Python style guide: PEP8

Maijor style areas
o Variable naming convention: instance_or_function,
ClassName
o Equation spacing: c = a + b not c=a+b
o Whitespace: indents are 4 spaces
Style can be checked and corrected with programs

like PyCharm or with linter programs

Version Control

THISIS GIT. IT TRACKS COLLABORATIVE. WORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

CoOL. HOU DO WE.VSE IT?

NO IDEA. JUST MEMORIZE. THESE SHELL
COMMANDS AND TYPE THEM TO SYNC UR
IF YOU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE. PROTECT,
AND DOWNLDAD A FRESH COPY.

https://xkcd.com/1597/

Version control: software that keeps track of
changes to files and merges changed files together
Git: distributed version control software

Github: website that stores git repositories in a
central location and provides project management
and organization tools

Why use version control:
o Keep track of changes in case you make a mistake and
need to recover old code
o Synchronize changes across multiple computers (edit code
on laptop and sync with supercomputer)
o Merge changes from different collaborators
o Work on new ideas in different branches of same repository

Testing

e (Code should be tested to ensure it
works properly and to catch changes

the break existing functionality
sca shape = 10
. Types Of teStS :::vnorm = iie onvNe 16, output_type="gaussian", data_forma channels_last",
oss="crps_norm", pooling_width=2)
®) Unit teStS: Check funCtionaIity Of Single :Z:_norm.builq_na:\:z:;;?calar_input_shape, conv_input_shape, 1)
Component a:g o Ifz:szgéifget_shape() [1] == scalar_input_shape
o Integration tests: ensures components work m
together properly
Testing framework: pytest
Challenges

o Writing good tests can be challenging
o Needing data to test ML/data loading
o Tests can’t cover all ways things go wrong

Code Review

e Different collaborators should work on different branches while implementing
new features

e When ready to share new code with everyone else, the developer should
request a code review by the leads for that package

e Code review should accomplish the following items:

o Verify the code works

o Check the style

o ldentify areas of confusion or unclear functionality
o ldentify potential performance bottlenecks

e Art of Giving and Receiving Code Reviews Gracefully:
https://www.alexandra-hill.com/2018/06/25/the-art-of-giving-and-receiving-cod
e-reviews/

https://www.alexandra-hill.com/2018/06/25/the-art-of-giving-and-receiving-code-reviews/
https://www.alexandra-hill.com/2018/06/25/the-art-of-giving-and-receiving-code-reviews/

Pull Requests

Installation and processing changes #20
djgagne merged 10 commits into master from djgagne (7] 2 days ago

) Conversation 6 -o- Commits 10 [F]l Checks o0 Files changed 10

djgagne commented 13 days ago

| updated the repo with a few key changes:

added an environment.yml file to install all dependencies with conda and a requirement file for pip.

changed processed variable names for Idaho so they are consistent with Cabauw
added a training config file with updated variable names for FastEddy.

copied processed datafiles to glade at /glade/p/cisl/aiml/fasteddy

djgagne added 5 commits on Oct 29

Q Added example.cu

@ Merge branch 'master' of github.com:NCAR/mlsurfacelayer into djgagne
a Added environment.yml and requirements files

9 Minor update to setup.py

g Added new training file and fixed Idaho derived units.

bc9bf88

d9ee3cf

340a0cc

7daa5a9

083eall

Edit Open with ~

+394 -179 HEEE

Reviewers

jsauer-NCAR

a charlie-becker

Assignees

No one—assign yourself

Labels

None yet

Projects

None yet

Milestone

No milestone

Linked issues 5§3

Successfully merging this pull request may close
these issues.

Continuous Integration

e Automated scripts that run whenever new
changes are pushed to github

e Functions
o Install all dependencies from scratch

o Run test suite
o Run test function
o Check style, test coverage
o Upload to package repository if everything
passes
e Frameworks
o TravisCl
o CircleCl

o Github Actions

e Benefits
o Automatically runs after commits and pull
requests
o Can test multiple configurations of
package
o Catches breaking changes throughout
pipeline

o Emails you if something is broken
e Drawbacks
o Requires moderate effort for initial setup
o Only as good as the tests are
o Can cost money for private repos or if
usage quota exceeded

Documentation

e Code should be documented so people know how to use it properly and how
it works

e Levels of documentation
o Docstrings: at beginning of function that describe purpose of function, inputs, outputs, and a
usage example
o Inline comments: Describe how a section of code works or why it is used
o Tutorial: Describes how to use package through a step-by-step guide
o Narrative documentation: describes motivation for code, history, science, broader context

APl vs. Narrative Documentation

. tmn Install User Guide APl Examples More >

Other versions

Please cite us if you use the
software.

3.2.4.3.4.
sklearn.ensemble.ExtraTreesRe
gressor

3.2.4.3.4.1. Examples using
sklearn.ensemble.ExtraTreesReg!

Toggle Menu

[

3.2.4.3.4. sklearn.ensemble.ExtralreesRegressor

class sklearn.ensemble. ExtraTreesRegressor(n_estir 100, *, ‘mse’, max_depi
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto', max_leaf |
min_impurity,_split h , 00b_: = n_ji

, min_samples_split=2,
, min_impurity. 0.0,
, random_ b 0,

warm_start=False, ccp_alpha=0.0, max_samples=None) [source]

An extra-trees regressor.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-
samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.

Read more in the User Guide.

Parameters: n_estimators : int, default=100

The number of trees in the forest.

Changed in version 0.22: The default value of n_estimators changed from 10 to 100 in 0.22.

criterion : {“mse”, “mae”}, default="mse"
The function to measure the quality of a split. Supported criteria are “mse” for the mean squared error,
which is equal to variance reduction as feature selection criterion, and “mae” for the mean absolute error.

New in version 0.18: Mean Absolute Error (MAE) criterion.

max_depth : int, default=None
The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves
contain less than min_samples_split samples.

min_samples_split : int or float, default=2
The minimum number of samples required to split an internal node:

« Ifint, then consider min_samples_split as the minimum number.
o If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the
minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf : int or float, default=1
The minimum number of samples required to be at a leaf node. A split point at any depth will only be
considered if it leaves at least min_samples_leaf training samples in each of the left and right branches.
This may have the effect of smoothing the model, especially in regression.

« Ifint, then consider min_samples_leaf as the minimum number.
o If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf * n_samples) are the mini-
mum number of samples for each node.

O learn

sci learn 0.23.2
Other versions

Please cite us if you use the
software.

1.11. Ensemble methods
1.11.1. Bagging meta-estimator
1.11.2. Forests of randomized
trees

1.11.3. AdaBoost

1.11.4. Gradient Tree Boosting
1.11.5. Histogram-Based Gradient
Boosting

1.11.6. Voting Classifier

1.11.7. Voting Regressor

1.11.8. Stacked generalization

1.11.2.2. Extremely Randomized Trees

In extremely randomized trees (see ExtraTreesClassifier and ExtraTreesRegressor classes), randomness goes one step fur-
ther in the way splits are computed. As in random forests, a random subset of candidate features is used, but instead of looking
for the most discriminative thresholds, thresholds are drawn at random for each candidate feature and the best of these random-
ly-generated thresholds is picked as the splitting rule. This usually allows to reduce the variance of the model a bit more, at the
expense of a slightly greater increase in bias:

from sklearn.model_selection import cross_val_score
from sklearn.datasets import make_blobs

from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier

X, y = make_blobs(n_samples=10000, n_features=10, centers=100,
random_state=0)

clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,
e random_state=0)

>>> scores = cross_val_score(clf, X, y, cv=5)

>>> scores.mean()

0.98...

>>> clf = RandomForestClassifier(n_estimators=10, max_depth=None,
min_samples_split=2, random_state=0)

>>> scores = cross_val_score(clf, X, y, cv=5)

>>> scores.mean()

0.999...

>>> clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,
min_samples_split=2, random_state=0)

>>> scores = cross_val_score(clf, X, y, cv=5)

>>> scores.mean() > 0.999

True

Classifiers on feature subsets of the Iris dataset

DecisionTree RandomForest ExtraTrees

Jupyter Notebooks

In [14]: print('Metrics for Box Emulator:')

e Interactive coding and visualization
it o e i e interface

pred_box.iloc[:,0:3].plot()

Metrics for Box Emulator: M
RMSE: Precursor: 0.00946, Gas: 0.06098, Aerosols: 0.02118 . el le I S

R2: Precursor: 0.53770, Gas: 0.00260, Aerosols: 0.47804
Hellenger Distance: Precursor: 0.11655, Gas: 0.21057, Aerosols: 0.33689

Out[14]: <matplotlib.ax‘es.7subplots.AxeSSubplot at 0x2b46£7601a50> O Load data and interact With it On multiple

— Precursor [ug/m3]
Gas [ug/m3]

= b computing platforms

Merge docs and code together
Great for tutorials

Can run locally, HPC, cloud

Can convert notebooks to packages
(nbdev)

e Drawbacks

A D moe"mo\o 3‘Ima . %Oooh :mo moek di 1 val Itis f: hallengil del the I h of the (~1440 O Can encourage Spaghetti COde
o Errors caused by order of running cells

1000 2000 3000 4000 5000 6000 7000

— Precursor [ug/m3]
Gas [ug/m3]
— Aerosol [ug_m3]

O O O O

timesteps). Furthermore, you may discover that better performance on the neural network may not mean better performance with the box emulator.

Some potential ideas for better emulator performance: adding some noise to the training data to prevent overfitting, or using a recurrent neural
network/LSTM to utilize more than one timestep to inform prediction of the next.

]] o Need Python environment setup

Precursor Aerosols

correctly to work

Challenges

e Participation in code review
o Less experienced people can be intimidated from commenting on pull requests
o Need to encourage comments and have a positive environment for commenting
o Avoid gatekeeping behavior or overly harsh criticism
e Documentation
o Always needed but can be tedious to write
o Need feedback on documentation priorities
o Documentation needs can be quickly evident by having a beginner try to use the code
e Teaching Coding Standards
o Can point everyone to tutorials
o People need to get in habit of practicing tasks
e Changing Standards

o Software recommendation and fashions change with time
o Balancing consistent guidance with adapting to new effective practices

Summary and Questions

e More detailed documents in AI2ZES coding standards working group folder
e Add practices to this document

e Questions:
o What other coding practices should we use?
o What is essential, nice to have, or overly burdensome?
o How to incorporate science workflow and priorities into coding process?
o Who wants to join the group?

e Email me: dgagne@ucar.edu

https://docs.google.com/document/d/1zSVMgGnk3JiJSN3-lWWE0HTSsAzQFeF6NQ-AdV1LR60/edit?usp=sharing

