
AI2ES Coding Standards
Group Lead: David John Gagne

December 16, 2020



Introduction
● AI2ES members will be developing software libraries collaboratively across 

multiple groups and institutions
● Ideally we want to share software across the institute and release packages 

to the public
● Coding standards will enable us to encourage/enforce a level of software 

quality across all shared repositories
● However, some standards are easier to implement and enforce than others
● Goals:

○ Discuss potential types of standards we should aim to encourage across the institute
○ What is necessary vs. nice to have vs. overly burdensome?



Python Packaging Structure
● package-name/

○ README.md: Contains description of package, installation 
and use instructions

○ setup.py: Script for installing the package
○ LICENSE: License text (CC0)
○ environment.yml: contains list of dependencies for the 

conda installer
○ requirements.txt: list of packages for pip installer
○ package/: Directory containing all python module files (.py)

■ test/: Contains all unit test files
○ doc/: Documentation directory
○ scripts/: Contains helper scripts and executable programs
○ notebooks/: Contains jupyter notebooks

Source: Amazon



Coding Style
● Goal: ensure that all code follows the same 

formatting conventions for a consistent look and 
meaning across packages

● Python style guide: PEP8
● Major style areas

○ Variable naming convention: instance_or_function, 
ClassName

○ Equation spacing: c = a + b not c=a+b
○ Whitespace: indents are 4 spaces

● Style can be checked and corrected with programs 
like PyCharm or with linter programs



Version Control
● Version control: software that keeps track of 

changes to files and merges changed files together
● Git: distributed version control software
● Github: website that stores git repositories in a 

central location and provides project management 
and organization tools

● Why use version control:
○ Keep track of changes in case you make a mistake and 

need to recover old code
○ Synchronize changes across multiple computers (edit code 

on laptop and sync with supercomputer)
○ Merge changes from different collaborators
○ Work on new ideas in different branches of same repository

https://xkcd.com/1597/



Testing

● Code should be tested to ensure it 
works properly and to catch changes 
the break existing functionality

● Types of tests
○ Unit tests: check functionality of single 

component
○ Integration tests: ensures components work 

together properly

● Testing framework: pytest
● Challenges

○ Writing good tests can be challenging
○ Needing data to test ML/data loading
○ Tests can’t cover all ways things go wrong



Code Review
● Different collaborators should work on different branches while implementing 

new features
● When ready to share new code with everyone else, the developer should 

request a code review by the leads for that package
● Code review should accomplish the following items:

○ Verify the code works
○ Check the style
○ Identify areas of confusion or unclear functionality
○ Identify potential performance bottlenecks 

● Art of Giving and Receiving Code Reviews Gracefully: 
https://www.alexandra-hill.com/2018/06/25/the-art-of-giving-and-receiving-cod
e-reviews/

●

https://www.alexandra-hill.com/2018/06/25/the-art-of-giving-and-receiving-code-reviews/
https://www.alexandra-hill.com/2018/06/25/the-art-of-giving-and-receiving-code-reviews/


Pull Requests



Continuous Integration
● Automated scripts that run whenever new 

changes are pushed to github
● Functions

○ Install all dependencies from scratch
○ Run test suite
○ Run test function
○ Check style, test coverage
○ Upload to package repository if everything 

passes
● Frameworks

○ TravisCI
○ CircleCI
○ Github Actions

● Benefits
○ Automatically runs after commits and pull 

requests
○ Can test multiple configurations of 

package
○ Catches breaking changes throughout 

pipeline
○ Emails you if something is broken

● Drawbacks
○ Requires moderate effort for initial setup
○ Only as good as the tests are
○ Can cost money for private repos or if 

usage quota exceeded



Documentation
● Code should be documented so people know how to use it properly and how 

it works
● Levels of documentation

○ Docstrings: at beginning of function that describe purpose of function, inputs, outputs, and a 
usage example

○ Inline comments: Describe how a section of code works or why it is used
○ Tutorial: Describes how to use package through a step-by-step guide
○ Narrative documentation: describes motivation for code, history, science, broader context



API vs. Narrative Documentation



Jupyter Notebooks
● Interactive coding and visualization 

interface
● Benefits

○ Load data and interact with it on multiple 
computing platforms

○ Merge docs and code together
○ Great for tutorials
○ Can run locally, HPC, cloud
○ Can convert notebooks to packages 

(nbdev)

● Drawbacks
○ Can encourage spaghetti code
○ Errors caused by order of running cells
○ Need Python environment setup 

correctly to work



Challenges
● Participation in code review

○ Less experienced people can be intimidated from commenting on pull requests
○ Need to encourage comments and have a positive environment for commenting
○ Avoid gatekeeping behavior or overly harsh criticism

● Documentation
○ Always needed but can be tedious to write
○ Need feedback on documentation priorities
○ Documentation needs can be quickly evident by having a beginner try to use the code

● Teaching Coding Standards
○ Can point everyone to tutorials
○ People need to get in habit of practicing tasks

● Changing Standards
○ Software recommendation and fashions change with time
○ Balancing consistent guidance with adapting to new effective practices



Summary and Questions
● More detailed documents in AI2ES coding standards working group folder
● Add practices to this document
● Questions:

○ What other coding practices should we use?
○ What is essential, nice to have, or overly burdensome?
○ How to incorporate science workflow and priorities into coding process?
○ Who wants to join the group?

● Email me: dgagne@ucar.edu

https://docs.google.com/document/d/1zSVMgGnk3JiJSN3-lWWE0HTSsAzQFeF6NQ-AdV1LR60/edit?usp=sharing

