

OVERVIEW

- 1. Objective
- 2. Background Information
- 3. Materials
- 4. IDBE Implementation
- 5. Assignment
- 6. Closing
- 7. Activity

OBJECTIVE

- Become familiar with sensors and prototyping components commonly used in EG-UY 1004
- Participate in mock RAD ideation with components from a Spin the Wheel activity

BACKGROUND INFORMATION

What is prototyping?

- Prototyping is the process of designing and building an early model of a product to test it
- Proof of concept
- In EG-UY 1004, the Rapid Assembly and Design project is centered around prototyping

BACKGROUND INFORMATION

- Electrical components (e.g. sensors, wires)
- Mechanical components (e.g. gears, wheels)
- SLDPs will have access to the EG-UY 1004
 Open Lab
 - Much broader range of materials than what is presented in this activity

Figure 1: Some EG-UY 1004 materials in Open Lab

LIGHT SENSOR

What it Does

- Function: Measures light intensity
- Output: Analog or digital signal proportional to light intensity

- Automatic Lighting: Adjust indoor lighting based on ambient light
- Smart Garden: Monitor sunlight exposure for plants

Figure 2: Image courtesy of Amazon

BUZZER

What it Does

- Function: Produces sound when electrical signal is applied.
- Output: Audible tone or beep

- Alerts: Audible alarms or notifications
- Games: Provide sound effects in electronic games

Figure 3: Image courtesy of Amazon

FLUID PUMP

What it Does

- Function: Moves fluids from one place to another
- Output: Controlled flow of liquid

- Medical Devices: Control fluid delivery in medical treatments
- Watering Systems: Automate irrigation in gardens or greenhouses

Figure 4: Image courtesy of DigiKey

LCD (LIQUID CRYSTAL DISPLAY)

What it Does

- Function: Displays alphanumeric characters on a
 16-column by 2-row screen
- Output: Visual display of text and simple graphics

- Data Monitoring: Show system/sensor statuses
- User Interfaces: Display information and interact with users

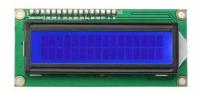


Figure 5: Image courtesy of Arduino

FSR (FORCE SENSITIVE RESISTOR)

What it Does

- Function: Measures force applied
- Output: Resistance corresponding to the force applied

- **Medical wearables:** Detect muscle contraction
- **Consumer electronics:** Touch sensitive controls
- Robotics: Sense touch from robotic limbs

Figure 6: Image courtesy of SparkFun

JOYSTICK MODULE

What it Does

- **Function:** Provides directional control input
- Output: X and Y axis positions

- Gaming: Control game characters or vehicles
- Robotics: Manual control of robotic arms or vehicles

Figure 7: Image courtesy of Amazon

ULTRASONIC SENSOR

What it Does

- Function: Measures distance using ultrasonic waves
- Output: Distance measurement based on echo time

- Proximity Sensors: Detect presence of objects or people
- Level Measurement: Monitor liquid levels in tanks

Figure 8: Image courtesy of SparkFun

BLUETOOTH MODULE

What it Does

- Function: Enables wireless communication between devices
- Output: Wireless data transfer

- Remote Control: Operate devices remotely
- Wireless Data Transfer: Send data between microcontrollers and smartphones

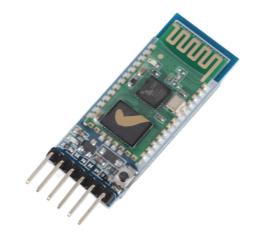


Figure 9: Image courtesy of Amazon

CO2 SENSOR

What it Does

- Function: Measures carbon dioxide concentration in the air
- Output: Analog signal proportional to CO2 levels

- Ventilation Control: Adjust ventilation systems based on CO2 levels
- Greenhouse Management: Optimize conditions for plant growth

Figure 10: Image courtesy of Digikey

IDBE IMPLEMENTATION

- Involve a diverse group of voices in the prototyping process
 - Helps ensure your solution is inclusive
- Consider how your design might affect people and society in the long run
 - Effects on the climate, marginalized groups, etc.
 challenges may you face when trying to balance

What challenges may you face when trying to balance business goals and ethical design practices? How can you balance the two?

Figure 11: Diverse Voices, courtesy of LinkedIn

ASSIGNMENT

Lab 1 Ideation Assignment (one .docx file):

- Identify and document challenges or inconveniences in:
- Your daily life
- Accessibility or disability issues faced by individuals
- Template is found on the EG Manual under Lab 1
- Due at 11.59 PM tonight on the EG website
- One .docx file with both RAD and HIR ideas

Spin the Wheel - total 3 rounds

- Each round, there will be 3 components to be included in your prototype
 - Must include all 3 components in your design
 - Can include other components if wanted
- 10 minutes for discussion per round
- 2 minutes to present your ideas to the class after each round
- TAs will provide feedback on your idea

Spin the Wheel - Round 1

Discuss a prototype that can be used during your time at college

Spin the Wheel - Round 2

- Form small groups with classmates in your major
- Discuss a prototype that can solve a problem related to your major

Spin the Wheel - Round 3

No limits! Come up with a brand new idea for a prototype.

