�
Data Mining_Anoop Chaturvedi
1
Swayam Prabha
Course Title
Multivariate Data Mining- Methods and Applications
Lecture 24
Backpropagation of Errors Algorithm
By
Anoop Chaturvedi
Department of Statistics, University of Allahabad
Prayagraj (India)
Slides can be downloaded from https://sites.google.com/view/anoopchaturvedi/swayam-prabha
Data Mining_Anoop Chaturvedi
2
Data Mining_Anoop Chaturvedi
3
Data Mining_Anoop Chaturvedi
4
Data Mining_Anoop Chaturvedi
5
Data Mining_Anoop Chaturvedi
6
Data Mining_Anoop Chaturvedi
7
Data Mining_Anoop Chaturvedi
8
Data Mining_Anoop Chaturvedi
9
Data Mining_Anoop Chaturvedi
10
Data Mining_Anoop Chaturvedi
11
Data Mining_Anoop Chaturvedi
12
Data Mining_Anoop Chaturvedi
13
To summarize, Backpropagation algorithm involves two main steps:
Data Mining_Anoop Chaturvedi
14
Initial Values
Data Mining_Anoop Chaturvedi
15
Data Mining_Anoop Chaturvedi
16
Data Mining_Anoop Chaturvedi
17
Data Mining_Anoop Chaturvedi
18
Data Mining_Anoop Chaturvedi
19
Input Scaling:
Before fitting scale inputs to interval [0,1], [-1,1] or standardize have 0 mean and unit variance.
How many Hidden nodes and Layers?
Ockham’s razor ⇒ Keep the model as simple as possible while maintaining its ability to generalize well.
Data Mining_Anoop Chaturvedi
20
Over fitting and Network Pruning
Data Mining_Anoop Chaturvedi
21
Data Mining_Anoop Chaturvedi
22
Data Mining_Anoop Chaturvedi
23
Data Mining_Anoop Chaturvedi
24
Rotation
Mirroring
Original
Translation
Scaling
MLP is trained for learning a map from input to output, where input is from a fixed location.
It is not feasible to train the MLP for all possible transformations and combinations.
Thus, MLP may not be able to identify the digits or images in the presence of these transformations.