
Introduction to Pointers

Dr. Aminul Haque
Associate Professor, Department of CSE

Daffodil International University, Dhaka, Bangladesh

Topics

1. Advantages of using pointers in a program
2. Pointers to variables
3. Using pointers in functions
4. Arrays & strings as pointers
5. Pointer arithmetic

Advantages of using pointers in a program

1. Pointers used to access the address of the variable
2. Pointers increase the execution speed of program
3. Pointers are an important concept while implementing

data structures such as link lists, trees & graphs
4. Pointers are used for dynamic memory allocation
5. Pointers makes possible to return more than one value in

functions
6. Pointer enables us to access variables that are declared

outside the functions
7. Strings and arrays are more efficient with pointers

Pointers to variables

A pointer is nothing but a variable that contains an address of
a location in memory. We can declare the variable ptr as a
pointer to an integer as:

int *ptr;
Let us consider the following example:

int x;
int *ptr;
ptr = &x;
Now extending the code with x=5;

Pointers to variables

1. Dereferencing the pointer:
2. *ptr = 5;
3. The asterisk ‘*’ symbol is called dereferencing

operator.

Using pointers in functions

● Passing arguments to functions:
− void ChangeI(int i);
−
− Main() {

int i=0;
ChangeI(i);
Print(i);

− }
− void ChangeI(int i) {

i=10;
− }

● The value of i is not changed because the argument to the function is
passed by value.

Using pointers in functions

Passing the arguments to the function by reference (passed
by reference):

void ChangeI(int *i);
main() {

int i=0;
ChangeI(&i);
Print(i);

}
void ChangeI(int *i) {

*i=10;
}

−

Using pointers in functions

Significance of passing variables by reference:

− void swap(int a, int b) {
int tmp = b;
b=a;
a=tmp;

− }
main() {

int a=10, b=20;
Swap(a, b);
Print(a, b);

}
Now, calling the function swap(a, b) will not actually swap the

values; however, changing it to swap(&a, &b) will do the work.

Using pointers in functions

void swap(int *a, int *b) {
int tmp = *b;
*b=*a;
*a=tmp;

}

From main(),

int a=20,b=10;
swap(&a,&b);
Print(a, b);

Arrays & strings as pointers

On the stack (static):
− float a[5];
−
− char str[] = "hello";

Arrays & strings as pointers

Dynamically allocated in the heap:
float *a = malloc(5*sizeof(float));

The sizeof(float) will return 4 because floating point number
requires 4 bytes of memory.

The benefit of using arrays that are dynamically allocated in the

heap is that we can free up the memory that was allocated for
them with:

free(a);

Pointer arithmetic

while every pointer only needs 4 bytes to store a memory
address, the compiler also needs to know the type of
variable that it points to in order to perform pointer
arithmetic. Let us consider,

int *b, a[]={5,10,15,20,25};
Now, b=a

Again, b=a+1

Thanks!

