
Welcome to Lecture 18:
Intro to OOP

1) Open a Code Editor

a) code.cs61a.org

b) VS Code

2) Use Iclicker for attendance

3) Lecture 18 Guide: tinyurl.com/S24CS10L5

http://tinyurl.com/S24CS10L5

Topics

● Class: A blueprint for creating objects. It defines a set of attributes and methods that
the objects created from the class will have.

● Object: An instance of a class. It is created using the class blueprint and can have its
own state (attributes) and behavior (methods).

● Method: A function defined within a class. It describes the behaviors of the objects
created from the class.

● Attribute: A variable defined within a class. It describes the state or properties of the
objects created from the class.

Announcements

● Project 4: Pyturis will be released on Thursday

● Midterm Retake on Friday, 1 to 4PM

○ Same logistics as Midterm

● Midterm Review Recording Available…

Review: Tuples

Tuples are similar to lists:

● You create them using comma separated lists inside parentheses rather than square
brackets

● You can access values at specific indices with square brackets just like with lists, you
just can’t change the values

● Tuples are immutable, lists are mutable

some_tuple = (1, 5, 10, 4, 7, 16, 2)

some_list = [1, 5, 10, 4, 7, 16, 2]

Tuples: Immutable

1. You cannot add or delete elements
a. Once a tuple is created, you cannot add new elements to it or remove existing

elements from it.
b. The size and content of the tuple are fixed.

Tuples: Modifying Values within a Tuple

Modifying values

a. If the elements of the tuple are immutable types (like integers, strings, or
another tuple), those values cannot be changed.

b. However, if the tuple contains mutable elements (like lists or dictionaries),
those elements can be modified.

Review: Creating/Accessing Tuple Elements

my_tuple = (1, 'apple', 3.14, True, 'Python')

print(my_tuple[0]) # Output: 1

print(my_tuple[2]) # Output: 3.14

print(my_tuple[-1]) # Output: Python

Review: Tuple Operations

● Concatenate

● Slicing

● Unpacking a Tuple in Variables

● Iterating Over a Tuple

Review: Creating Dictionaries and Accessing Values

You can access values in a dictionary by using their corresponding keys.

Dictionaries vs Lists

Dictionary Methods

● .keys(): Returns a view object of all the keys in the dictionary

● .values(): Returns a view object of all the values in the dictionary

● .items(): Returns a view object of all the key-value pairs in the dictionary

● .get(): Returns the value for a specified key if the key is in the dictionary

● .update(): Updates the dictionary with elements from another dictionary
object or from an iterable of key-value pairs

Iterating through a Dictionary

- Iterate through keys
for k in my_dictionary.keys():
for k in my_dictionary:

- Iterate through values
for v in my_dictionary.values():

- Iterate through keys and values
for k,v in my_dictionary.items():

- Check if k is a key in dictionary
k in my_dictionary.keys()
k in my_dictionary

- Check if v is a value in dictionary
v in
my_dictionary.values()

CS10 is not a course about Snap! Or Python…

What we’re learning is Computational Thinking and Creative Problem
Solving

● Fundamentals of Computer Science

● Developing strategies to solve problems

○ Define: What is the problem asking?

○ Research/Reference: Where have I seen this before?

○ Apply the concepts in code

○ Feedback/Iterate: What worked? What needs to be
changed?

1
3

greeting = "Hello, world!"

print(type(greeting))

<class 'str'>

You can use the type
function to determine a
variables’ type

It gives you a little more
than you need to know, but
you can find the type in
single quotes after the world
class.

Recall…Type() function

Name: Lisa
Lisa
<class 'str'>

Name:

name = input("What is your name: ")

print(name)

print(type(name))

● Every object has a type, called its class.

● Built-in classes, we’ll make our own!

1
6

Enter: OBJECT-ORIENTED PROGRAMMING (OOP)

● OOP is a programming paradigm with its own vocabulary:

○ Class: A template for defining entities (called objects.)

○ Object: An entity defined by (an instance of) a particular class.

■ Every object has a type, called its class.

○ To create new types of data, we implement new classes.

● Classes are an essential part organizing code in Object Oriented
Programming (OOP)

1
7

OBJECT-ORIENTED PROGRAMMING (OOP)

● Modular Programming: Separating the functionality of a program into
independent chunks (modules.)

● What is it?

○ It's a way of writing computer programs by breaking them into
smaller, separate parts.

● Why do it?

○ It makes the program easier to understand, manage, and fix.

○ Each part (or module) can be worked on independently.

1
8

OBJECT-ORIENTED PROGRAMMING (OOP)

● Class → CS10 (Template)

● Object→ CS10 Summer 2024

1
9

OBJECT-ORIENTED PROGRAMMING (OOP)

● Modular Programming: Separating the functionality of a program into
independent chunks (modules.)

● Example of a modular procedure:

○ Modules communicate

○ Abstraction barriers!

2
0

Defining a Class

● A class is a blueprint or template for creating objects.

● It defines a set of attributes and methods that the objects created
from the class will have

Super Mario Brother’s Villain Classes

Super Mario Brothers World 1-1

http://www.youtube.com/watch?v=-avspZlbOWU

Defining a Class

This code does the following:

1. Defines a Class Named Dog: It tells Python that you are defining a new class
called Dog.

2. pass Statement: The pass statement is a placeholder that does nothing.

a. It is used to indicate an empty block of code.

b. In this context, it means that the Dog class has no attributes or methods yet,
but you are defining it as a class.

● Classes are created using class
 statements:

class <name>:
 <suite>

● dog1 is an object of the class Dog.
Thus, the type of jack is Dog.

2
5

Defining a class

Constructors and Instance Attributes - Demo

● The “dunder init” (double-under)
method is the constructor of the
class Dog.

2
6

● When we call dog1 = dog(“Costa”),
the parameter self is bound to the
newly created dog object.

● The constructor binds the value
“Costa” to the object’s name
attribute.

QUESTION

● Why does Python throw
and error?

2
7

DOT NOTATION

● We could also rename Costa
using Dot notation

2
8

CLASS ATTRIBUTES

2
9

● Class Attributes: attributes whose values are shared across all objects of
that class.

○ They typically represent properties of the class itself, and not
necessarily those of a particular instance.

● Example: A class attribute for the Dog class might be species.

CLASS ATTRIBUTES

3
0

● Assigned in the suite of the class,
outside any method definitions.

CLASS ATTRIBUTES

3
1

● Be careful with instance vs class
attributes!

CLASS ATTRIBUTES

3
2

● Updating a class attribute.

CLASS ATTRIBUTES

3
3

● Overriding a class attribute.

Creating an Object with multiple attributes

vars() function to print all the attributes of an Object

Task 1: Lets Make our own Class!

● Create a Class called “Book”

● In the Constructor, include 3 instance attributes

○ Title

○ Author

○ Publication Year

● Include 1 Class Attribute: Number of Books, set to 0

http://www.youtube.com/watch?v=zVHWhLme2NQ

Question

How can we iterate on Number of Books each time a new Book Object is created?

Iterating Class attribute from the Constructor

INSTANCE METHODS

3
9

● What can a Dog do? Woof Woof!

INSTANCE METHODS

4
0

● Defined by a def
statement in the suite
of a class statement.

INSTANCE METHODS

4
1

● Include a special first
parameter self,

● implicitly bound to
the object on which the
method is invoked,
thanks to dot notation.

INSTANCE METHODS

4
2

● In an instance method,
we have access to the
object’s attributes via
the parameter self.

INSTANCE METHODS

4
3

● Formatted strings /
f-strings.

Task 2: Calculate Age

● Create an Instance Method that will return that age of a Book object

http://www.youtube.com/watch?v=zVHWhLme2NQ

Lab 16 Part I

● Repr method

● Takes attributes of Object, returns a string representation of the objects attributes in

a string that, when passed to the eval() function, would recreate the object
exactly

