

AGENDA

- 1. Objectives
- 2. Background Information
- 3. Materials
- 4. Activity
- 5. Procedure
- 6. Assignments

Figure 1. Autodesk Fusion Icon Courtesy of AppRecs

OBJECTIVE

- Build a 3D model using computer-aided design software AutoDesk Fusion
- 2. **Evaluate** the safety factor of a 3D model using the AutoDesk Fusion simulation software

Computer Aided Design (CAD)

- Software that allows engineers create or modify, analyze, or optimize a design
- CAD models are used as the basis for physical designs

Figure 2. A CAD model of an electronic saxophone (left), later assembled and enclosed in 3D printed plastic (right).

Design Workspace

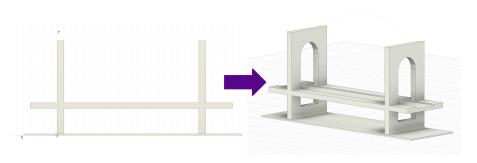


Figure 3. 2D sketch (left) and respective 3D model (right) designed in AutoDesk Fusion

Simulation Workspace

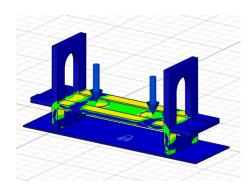
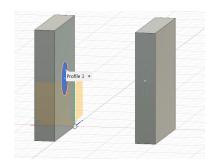
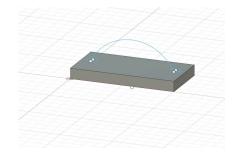


Figure 4. Simulation results of 3D model with load applied in AutoDesk Fusion


Design Workspace Tools

Extrude

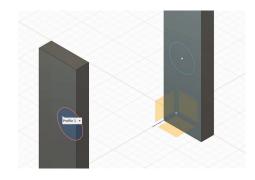

Projects sketch outward

Loft

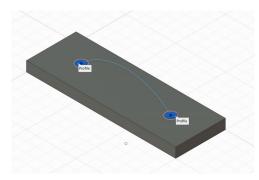
Creates a 3D extrusion to connect two surfaces (profiles)

Sweep

Creates a 3D model of a profiles along a specific path


Design Workspace Tools

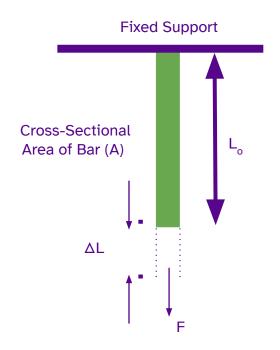
Extrude


Projects sketch outward

Loft

Creates a 3D extrusion to connect two surfaces (profiles)

Sweep



Creates a 3D model of a profiles along a specific path

Stress

External force acting on an object per unit cross-sectional area

$$Stress \; (\sigma) = rac{F}{A}$$

Strain

Measure of deformation from an applied force

$$Strain\left(\epsilon
ight)=\left.rac{\Delta L}{L_{0}}
ight.$$

F = applied force A = cross-sectional area ΔL = change in length L_o = original length

Safety Factor Simulation

- Static simulation that calculates the ratio of the yield strength to the applied stress
- Yields strength represents the point at which the material experiences permanent deformation under an applied stress

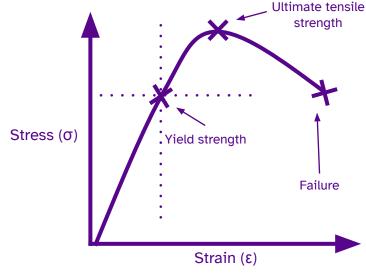


Figure 5. Stress-strain curve.

MATERIALS

- Writing utensil
- Sheet of paper
- A lab PC
- Autodesk Fusion
- Predesigned part files (download directly from the manual)

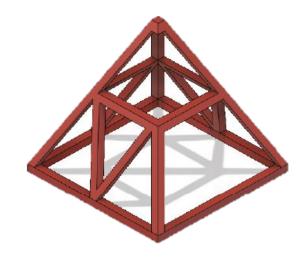


Figure 6. Sample part for Skills Workshop 2.

ACTIVITY

Part 1: Tutorial

Part 2: Safety Factor Simulation

We will assign you into groups of 3-4 students for today's activity and provide you with the necessary files.

Please have one member sign into AutoDesk Fusion!

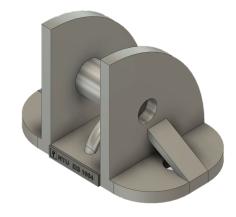
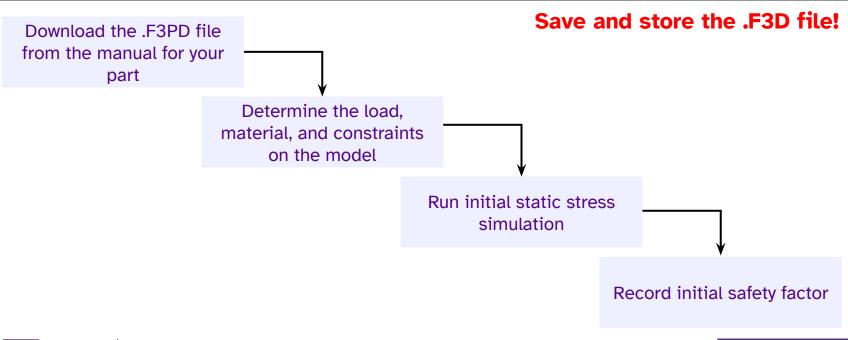
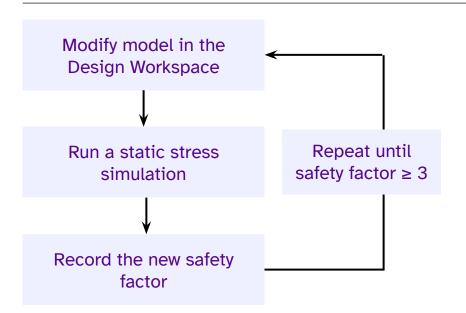



Figure 7. Redesigned part in AutoDesk Fusion.



PROCEDURE

PROCEDURE

Modification Constraints

- Redesigned part must be made of aluminum, steel, copper, or lead
- Volume of the redesigned part must be less than double the initial volume
- Cannot alter any applied loads or constraints
- Cannot remove areas highlighted in red on the model

ASSIGNMENTS

Two assignments due after this workshop:

- Technical memo (individual) due at 11:59 PM the night before Skills Workshop 3
- Slide deck (team) due at 11:59 PM the night before Recitation 3

Refer to the manual page for detailed information on each assignment!

Save and store the F3D file for these assignments!

Take a screenshet and record the safety factor after each medification!

