1 of 29

FP3 Chapter 1 �Hyperbolic Functions

www.dilanmaths.com

2 of 29

Recap of Conic Sections

All the ones you’ll see can be obtained by taking ‘slices’ of a cone (known as a conic section).

C2:

Circles

FP1:

Parabolas

FP1:

Rectangular Hyperbolas

FP3:

Hyperbolas

FP3

Ellipses

The axis of the parabola is parallel to the side of the cone.

3 of 29

Comparing different conics

We saw circles and ‘rectangular hyperbolas’ back in FP1.

Picture: Wikipedia

 

 

Circles

 

 

 

 

Hyperbolas

similar

similar

Parabolas

 

 

 

 

 

 

 

 

?

?

?

?

?

?

No need to make notes on this yet. We’ll cover it in Chapter 2.

4 of 29

What’s the point of hyperbolas?

 

?

OMG modelling!

5 of 29

Equations for hyperbolic functions

 

Say as “shine”

Say as “cosh”

Say as “tanch”

Say as “setch”

Say as “cosetch”

Say as “coth”

?

?

?

?

?

?

?

?

?

?

6 of 29

Equations for hyperbolic functions

 

?

?

?

?

Broculator Tip: Press the ‘hyp’ button.

7 of 29

Exercise 1

 

 

2

a

b

c

d

a

b

c

d

3

4

5

6

7

8

?

?

?

?

?

?

?

?

?

?

?

?

?

8 of 29

Sketching hyperbolic functions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

?

?

 

9 of 29

Sketching hyperbolic functions

 

 

 

 

 

 

 

 

 

 

 

 

 

?

 

10 of 29

Sketching hyperbolic functions

 

 

 

 

 

 

 

?

?

?

11 of 29

Test Your Understanding

 

 

 

 

 

 

 

 

?

?

12 of 29

Exercise 1B

 

 

 

 

 

 

 

1

2

?

?

?

13 of 29

Exercise 1B

 

 

3

4

?

?

?

?

?

?

?

?

14 of 29

Exercise 1B

5

 

 

?

?

15 of 29

Hyperbolic Identities

 

 

 

 

?

?

?

16 of 29

Hyperbolic Identities

We can similar prove that:

 

 

 

 

 

Notice this is + rather than - .

17 of 29

Osborn’s Rule

We can get these identities from the normal sin/cos ones by:

 

 

 

?

?

 

?

?

18 of 29

Examples

 

 

 

 

?

?

?

?

19 of 29

Exercise 1C

 

1

2

3

4

5

6

7

8

9

10

 

 

 

 

 

?

?

?

?

?

20 of 29

 

Exercise 1C

11

12

?

?

?

?

?

?

21 of 29

Inverse Hyperbolic Functions

As you might expect, each hyperbolic function has an inverse.

Note that lack of ‘c’.

 

 

 

 

 

22 of 29

Inverse Hyperbolic Functions

 

 

 

 

 

x

 

 

23 of 29

Inverse Hyperbolic Functions

 

 

 

?

?

?

24 of 29

Test Your Understanding

 

 

 

 

 

Show >

?

25 of 29

Summary

 

Hyperbolic

Domain

Sketch

Inverse Hyperbolic

Domain

Sketch

1

1

-1

1

1

-1

1

?

?

?

?

?

?

?

?

?

?

?

?

26 of 29

Exercise 1D

 

1

2

3

4

5

6

7

8

9

10

27 of 29

Solving Equations

Either use hyperbolic identities or basic definitions of hyperbolic functions.

 

 

 

 

?

?

28 of 29

Test Your Understanding

?

?

29 of 29

Exercise 1E

 

1

2

3

4

5

6

7

8

9

?

?

?

?

?

?

?

?

?

?

10

?