
Lecture 11: Introduction to
non-relational databases

Quan Nguyen, Ph.D.
Assistant Professor

Department of Computing Science

Oct 15, 2024

Learning goals
The goal of the 2nd half of this course is to equip students with a
comprehensive understanding and practical skills in working with
NoSQL databases, specifically MongoDB, and its integration with
Python through PyMongo. Additionally, students will learn to leverage
PySpark for large-scale data processing and analysis. Finally, students
will learn about the key principles in data governance, privacy, and
security.

ADSC 3610 - Why learn these tools?

Learning objectives
● Understand how relational and non-relational database differ in terms

of data structure, schema, and query language.
● Explain the pros & cons of each type of database and its use case
● Explain different types of non-relational databases (i.e., column-wide,

key-pair, graph, document)

Recap of relational database
● Relational databases are structured as a table, with rows and columns

PK PKFK

Advantages of relational databases
● Relational/Normalized data → reduce duplication, improve consistency
● Pre-defined schema and data format
● ACID compliant transactions
● Standardized query language across different RDBMS

Use case: When data
accuracy and transactional
reliability is prioritized over
flexibility and speed

Banking, finance, insurance

Limitations of relational database
Relational databases are structured as a table, with rows and columns

_id first_name last_name address email phone

1 Quan Nguyen Kamloops lnguyen@tru.ca 778-123-456

What if we want to add a second email?

_id first_name last_name address email1 email2 phone

1 Quan Nguyen Kamloops lnguyen@tru.ca quan@ubc.ca 778-123-456

Limitations of relational database
Let’s add another record

_id first_name last_name address email1 email2 phone

1 Quan Nguyen Kamloops lnguyen@tru.ca quan@ubc.ca 778-123-456

2 Ajay Dhruv Kamloops ajay@tru.ca 778-456-789

3

4

5

6

Limitations of relational database
Let’s add another column for second phone number for Ajay

_id first_name last_name address email1 email2 phone1 phone2

1 Quan Nguyen Kamloops lnguyen@tru.ca quan@ubc.ca 778-123-456

2 Ajay Dhruv Kamloops ajay@tru.ca 778-456-789 123-456-789

3

4

5

6

As you can see, the database gets bloated with empty fields

Limitations of relational database
SQL handle this problem by separating emails & phone into separate tables.
These tables are related to each other by user_id

_id first_name last_name address

1 Quan Nguyen Kamloops

2 Ajay Dhruv Kamloops

3

4

_id user_id email

1 1 q@ubc.ca

2 1 q@tru.ca

3 2 a@tru.ca

4 3 b@gmail.com

_id user_id phone

1 1 778-332-123

2 1 305-233-233

3 2 123-456-789

4 3 444-555-131

To update a record, we have to access multiple tables and join the data back
together → inefficient

Limitations of relational database

Vertical Scaling: Typically scaled by
increasing the resources of a single server
(e.g., more CPU, RAM).

Schemas must be created in
advance! → long time to set up, not
suited to handle unstructured data
or format is unknown.

You can read more about the pros/cons of vertical versus
horizontal scaling here

https://www.mongodb.com/resources/basics/horizontal-vs-vertical-scaling#:~:text=The%20vertical%20scaling%20approach&text=One%20of%20the%20advantages%20of,there%20is%20less%20complexity%20involved.

Filling in the Gap

Relational Databases
SQL was developed by IBM as a

way to interact with the new

relational databases

World Wide Web
Need for data storage

explodes

1970s

NoSQL
Unstructured data storage to

mitigate costs and increase

efficiency

1990s 2000s

Image Credit: MongoDB Educators’ resources

https://www.mongodb.com/academia/courses/introduction-to-modern-databases-with-mongodb

Non-Relational Database Types

DocumentColumnKey/Value Graph

● Flexible schema that accommodates unstructured data (JPGs, text, audio, video)
without the need to pre-define the structure

● High performance: Low latency, optimized for specific task
● Horizontal scaling by adding more nodes (rather than scaling up a single server)

Key/Value Database

Structure

● A unique key is paired with a

collection of values, where the

values can be anything from a

string to a large binary object.

Strength

● Simple data model.

Key Value

Name Sherlock Holmes

Age 40

Address 221B Baker Street

Key/Value: Example

They are highly optimized for
scenarios where quick lookups
based on a key are required.

Example: Caching, shopping cart

Tools: Redis, Amazon DynamoDB,
Riak

Graph Database

Structure

● Captures connected data.

● Each element is stored as a

node.

● Connections between nodes

are called links or relationships.

Strength

● Traverses the connections

between data rapidly.

Sherlock
Holmes

:frie
nds

with

John
Watson

:posted

Post
1

:posted

Post
3

Post
2

:po
st

ed

:friends
with

Irene
Adler

:friends with

:posted

Post
1

:liked

:liked

221B
BakerS
t.

:address

:a
dd

re
ss

Graph: Example

Graph Database

Use case

● Social networks

● Recommendation systems

Tools

● Neo4j

● Amazon Neptune

Column Oriented
or Wide Column

Structure

● Data is stored using key rows

that can be associated with

one or more dynamic

columns

Strengths

● Highly performant queries

● Designed for analytics

Name ID

Sherlock 001

John 002

Irene 003

Age ID

40 001

45 002

43 003

Height ID

6’2 001

5’9 002

5’7 003

Column Oriented Example

Document Database

Structure

● Polymorphic data models

● Each document contains markup

that identifies fields and values.

Strengths

● Obvious relationships using

embedded arrays and

documents

● No complex mapping

{
 "_id":
ObjectId("5ef2d4b45b7f11b6d7a"
),
 "user_id": "Sherlock
Holmes",
 "age": 40,
 "address":

{
 “Country: “England”
 “City”: “London”,
 “Street”: “221B Baker
St.”
},

 “Hobbies”:[violin,
crime-solving]
}

{
 "_id":
ObjectId("6ef8d4b32c9f12b6d4a")
,
 "user_id": "John Watson",
 "age": 45,
 "address":

{
 “Country: “England”
 “City”: “London”,
 “Street”: “221B Baker
St.”
},

 “Medical license”: “Active”
}

Document Model Example

The Document Model

For general purpose use, the
document model prevails as
the preferred model by
developers and database
administrators.

Next steps
Register a free account with MongoDB
Atlas using your Github account

https://www.mongodb.com/students

https://www.mongodb.com/students

