
CS193X:
Web Programming

Fundamentals
Spring 2017

Victoria Kirst
(vrk@stanford.edu)

Course logistics

Remember how we said the following on Day 1?

"This is the first ever offering of CS193X, meaning:

- Everything is subject to change."

→ We're making some changes to the schedule!

Grades

Homework: 60% 65%

Mini-HWs: 5%

Final Project: 35%

- We're dropping Mini-Homeworks: Too much hassle for

everyone. We're totally ignoring the first mini-HW you

turned in for HW1. Might try again next year.

CS193X Structure

"Homework 0" + 6 homeworks 5 homeworks

- Each homework will be a standalone web page or a very

small standalone web app

- Each homework with have a multiple choice

"mini-homework" attached to it

1 final project

- Choice of open-ended OR structured

- Basically you can do HW6 for your final project

- ~2 week in scope; individual project; no groups

0 exams

- No final, no midterm, no exams

Yes, another HW extension

Tentative schedule for the rest of the quarter:

Fri May 5

Mon, May 8:

- HW3 due -- Moved from this Friday to next Monday!

- HW4 goes out

Wed, May 17:

- HW4 due

- HW5 goes out

Tentative schedule

Tentative schedule for the rest of the quarter:

Fri, May 26

HW5 due

Final Project goes out

Wed, June 7:

Last day of lecture!

Mon, June 12

Final project due EOD: No late submissions

Disclaimer

This is the plan for the rest of the quarter.

However, there's still a lot of quarter left!

Everything I just said is still subject to change.

Classes in JavaScript

Public methods

class ClassName {

 constructor(params) {
 ...
 }

 methodName() {
 ...
 }

 methodName() {
 ...
 }
}

constructor is optional.

Parameters for the constructor

and methods are defined in

the same they are for global

functions.

You do not use the function

keyword to define methods.

Public methods

class ClassName {

 constructor(params) {
 ...
 }

 methodOne() {
 this.methodTwo();
 }

 methodTwo() {
 ...
 }
}

Within the class, you must

always refer to other methods

in the class with the this.

prefix.

Public methods

class ClassName {

 constructor(params) {
 ...
 }

 methodName() {
 ...
 }

 methodName() {
 ...
 }
}

All methods are public, and

you cannot specify private

methods… yet.

Public methods

class ClassName {

 constructor(params) {
 ...
 }

 methodName() {
 ...
 }

 methodName() {
 ...
 }
}

As far as I can tell, private

methods aren't in the

language only because they

are still figuring out the spec

for it. (They will figure out private fields

first.)

https://github.com/tc39/proposal-private-fields/blob/master/METHODS.md
https://github.com/tc39/proposal-private-fields
https://github.com/tc39/proposal-private-fields

Public fields

class ClassName {

 constructor(params) {
 this.fieldName = fieldValue;
 this.fieldName = fieldValue;
 }

 methodName() {
 this.fieldName = fieldValue;
 }
}

Define public fields by setting this.fieldName in the

constructor… or in any other function.
(This is slightly hacky underneath the covers and there is a draft to add

public fields properly to ES.)

https://tc39.github.io/proposal-class-public-fields/

Public fields

class ClassName {

 constructor(params) {
 this.someField = someParam;
 }

 methodName() {
 const someValue = this.someField;
 }
}

Within the class, you must always refer to fields with the

this. prefix.

Public fields

class ClassName {

 constructor(params) {
 this.fieldName = fieldValue;
 this.fieldName = fieldValue;
 }

 methodName() {
 this.fieldName = fieldValue;
 }
}

You cannot define private fields… yet.
(Again, there are plans to add add private fields to ES once the spec is

finalized.)

https://github.com/tc39/proposal-private-fields

Instantiation

Create new objects using the new keyword:

class SomeClass {

 ...

 someMethod() { … }

}

const x = new SomeClass();

const y = new SomeClass();

y.someMethod();

Why classes?

Why are we even doing this?

Why do we need to use classes when web programming?

Why can't we just keep doing things the way we've been

doing things, with global functions and global variables?

Why classes?

A: All kinds of reasons

- For a sufficiently small task, globals variables, functions,

etc. are fine

- But for a larger website, your code will be hard to

understand and easy to break if you do not organize it

- Using classes and object-oriented design is the most

common strategy for organizing code

E.g. in the global scope, it's hard to know at a variable called "name" would be

referring to, and any function could accidentally write to it.

- But when defined in a Student class, it's inherently clearer what "name"

means, and it's harder to accidentally write that value

Organizing code

Well-engineered software is well-organized software:

- Software engineering is all about knowing

1. What to change

2. Where to change it

- You can read an existing codebase better if it is

well-organized

- "Why do I need to read a codebase?" Because you

need to modify the codebase to add features and fix

bugs

Other problems with globals

Having a bunch of loose variables in the global scope is

asking for trouble

- Much easier to hack

- Can access via extension or Web Console

- Can override behaviors

- Global scope gets polluted

- What if you have two functions with the same

name? One definition is overridden without error

- Very easy to modify the wrong state variable

All these things are much easier to avoid with classes

Example: Present

Let's create a Present class inspired by our present

example from last week.

Starter / Finished

http://codepen.io/bee-arcade/pen/db0b3223fd87ed06051aa1f2abf5ec63?editors=1010
http://codepen.io/bee-arcade/pen/db0b3223fd87ed06051aa1f2abf5ec63?editors=1010
https://codepen.io/bee-arcade/project/editor/ZmgkzA/
https://codepen.io/bee-arcade/project/editor/DkmRVX/

How to design classes

You may be wondering:

- How do I decide what classes to write?

- How do I decide what methods to add to my class?

Disclaimer

This is not a software engineering class, and this is not an

object-oriented design class.

As such, we will not grade your OO design skills.

However, this also means we won't spend too much time

explaining how to break down your app into well-composed

objects.

(It takes practice and experience to get good at this.)

One general strategy

"Component-based" approach: Use classes to add

functionality to HTML elements ("components")

Each component:

- Has exactly one container element / root element

- Handles attaching/removing event listeners

- Can own references to child components / child

elements

(Similar strategy to ReactJS, Custom Elements, many other

libraries/frameworks/APIs before them)

Container element

One pattern:

<div id="present-container"></div>

const element =

 document.querySelector('#present-container');

const present = new Present(element);

// Immediately renders the present

Container element

A similar pattern:

<div id="present-container"></div>

const element =

 document.querySelector('#present-container');

const present = new Present();

// Renders with explicit call

present.renderTo(element);

Web: Almost total freedom

Unlike most app platforms (i.e. Android or iOS), you have

almost total freedom over exactly how to organize your

code

Pros:

- Lots of control!

Cons:

- Lots and lots and lots of decisions to make

Web: Almost total freedom

Unlike most app platforms (i.e. Android or iOS), you have

almost total freedom over exactly how to organize your

code

Pros:

- Lots of control!

Cons:

- Lots and lots and lots of decisions to make

- This is why Web Frameworks are so common: A web

framework just make a bunch of software engineer

decisions for you ahead of time (+provides starter code)

Don't forget this

If the event handler function you are passing to

addEventListener is a method in a class, you must pass

"this.functionName" (finished)

https://codepen.io/bee-arcade/project/editor/DkmRVX/

"Private" with _

A somewhat common JavaScript coding convention is to

add an underscore to the beginning or end of private

method names:

_openPresent() {

 ...

}

I'll be doing this in this class for clarity, but note that it's

frowned upon by some.

https://github.com/airbnb/javascript#naming--leading-underscore

Solution: Present

CodePen finished

https://codepen.io/bee-arcade/project/editor/DkmRVX/

this in event handler

Right now we access the image we create in the

constructor in _openPresent via

event.currentTarget.

this in event handler

Q: What if we make the image a field and access it

_openPresent via this.image instead of

event.currentTarget?

this in event handler

Error message!

CodePen / Debug

What's going on?

https://codepen.io/bee-arcade/project/editor/AmgrWZ/
https://13c8b606b3b241048e4daa587fae171d.production.codepen.codes/

JavaScript this

The this keyword in JavaScript is dynamically assigned, or

in other words: this means different things in different

contexts (mdn list)

- In our constructor, this refers to the instance

- When called in an event handler, this refers to… the

element that the event handler was attached to (mdn).

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this#As_a_DOM_event_handler

this in event handler

That means this refers to the element, not the

instance variable of the class...

...which is why we get this error message.

Solution: bind

To make this always refer to the instance object for a

method in the class (i.e. to get this to behave as you'd expect), you

can add the following line of code in the constructor:

this.methodName = this.methodName.bind(this);

Solution: bind

Now this in the _openPresent method refers to the

instance object (CodePen / Debug):

Moral of the story:

Don't forget to bind()

event listeners in your

constructor!!

https://codepen.io/bee-arcade/project/editor/ZBEqmD/
https://e5c4256085cc427ea0bff1d0f7379ba4.production.codepen.codes/

One more time:

Don't forget to bind()
event listeners in your

constructor!!

Communicating
between classes

Multiple classes

Let's say that we have multiple presents now (CodePen):

https://codepen.io/bee-arcade/project/editor/XaxgOZ/

Multiple classes

And we have implemented this with two classes:

- App: Represents the entire page

- Present: Represents a single present

App

Present

Has a list of
Presents

PresentPresentPresentPresent

CodePen

https://codepen.io/bee-arcade/project/editor/XaxgOZ/

Communicating btwn classes

What if we want to change the title when all present have

been opened? (CodePen)

https://codepen.io/bee-arcade/project/editor/DvzqmD/

Communication btwn classes

Communicating from App → Present is easy, since App

has a list of the Present objects.

App

Present

Has a list of
Presents

PresentPresentPresentPresent

App can just call methods on
Present:

present.doWhatever();

Communication btwn classes

However, communicating Present → App is not as easy,

because Presents do not have a reference to App

App

Present

Has a list of
Presents

PresentPresentPresentPresent

Communicating btwn classes

You have three general approaches:

1. Add a reference to App in Photo

This is poor software engineering, though we will allow it on

the homework because this is not an OO design class

2. Fire a custom event

OK (don't forget to bind)

3. Add onOpened "callback function" to Present

Best option (don't forget to bind)

Terrible style: Presents own
App
A naive fix is to just give Present a reference to App in its

constructor: CodePen

App

Present

Has a list of
Presents

PresentPresentPresentPresent

(Please don't

do this.)
Has an App

https://codepen.io/bee-arcade/project/editor/DdEqJZ/

Terrible style: Presents own
App

- Logically doesn't make

sense: a Present doesn't

have an App

- Gives Present way too

much access to App

- Especially bad in JS with

no private fields/

methods yet

App

Present

Has a list of
Presents

PresentPresentPresentPresent

Has an App

This is the easiest workaround, but it's terrible software

engineering.

Custom events

Custom Events

You can listen to and dispatch Custom Events to

communicate between classes (mdn):

const event = new CustomEvent(

 eventNameString, optionalParameterObject);

element.addEventListener(eventNameString);

element.dispatchEvent(eventNameString);

However, CustomEvent can only be listened to /

dispatched on HTML elements, and not on arbitrary class

instances.

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events

Custom Events: Present
example
Let's have the App listen for the 'present-open' event...

App

PresentPresentPresentPresentPresent

Has a list of
Presents

Each present fires
'present-open'
when clicked

App listens for 'present-open'
When present-open has fired for each
present, change the title.

CodePen attempt

https://codepen.io/bee-arcade/project/editor/DWBKqA/

this in event handler

Our first attempt at solution results in errors again!

(CodePen attempt)

https://codepen.io/bee-arcade/project/editor/DWBKqA/

Solution: bind

To make this always refer to the instance object for a

method in the class (i.e. to get this to behave as you'd expect), you

can add the following line of code in the constructor:

this.methodName = this.methodName.bind(this);

CodePen solution

https://codepen.io/bee-arcade/project/editor/AQPekX/

First-class functions

Recall: addEventListener

Over the last few weeks, we've been using functions as a

parameter to addEventListener:

dragon.addEventListener(

 'pointerdown', onDragStart);

image.addEventListener(

 'click', this._openPresent);

First-class functions

JavaScript is a language that supports first-class functions,

i.e. functions are treated like variables of type Function:

- Can be passed as parameters

- Can be saved in variables

- Can be defined without a name / indentifier

- Also called an anonymous function

- Also called a lambda function

- Also called a function literal value

https://en.wikipedia.org/wiki/First-class_function

Function variables

You can declare a function in several ways:

function myFunction(params) {

}

const myFunction = function(params) {

};

const myFunction = (params) => {

};

Function variables

function myFunction(params) {

}

const myFunction = function(params) {

};

const myFunction = (params) => {

};

Functions are invoked in the same way, regardless of how

they were declared:

myFunction();

Simple, contrived example

CodePen

https://codepen.io/bee-arcade/pen/cff88343de4655069e157f094cccf247?editors=0011

A real example: Callbacks

Another way we can communicate between classes is

through callback functions:

- Callback: A function that's passed as a parameter to

another function, usually in response to something.

https://en.wikipedia.org/wiki/Callback_(computer_programming)

Callback: Present example

Let's have Presents communicate with App via callback

parameter: (CodePen attempt)

App

PresentPresentPresentPresentPresent

Has a list of
Presents

Each Present saves an
onOpenCallback parameter
in the constructor
When the present is opened,
fire the callback

App has _onPresentOpened method
When App is constructing Presents, pass its
this._onPresentOpened method as parameter
to Present constructor

https://codepen.io/bee-arcade/project/editor/XErMkA/

this in event handler

Say, it's another error in our event handler...

Solution: bind

Unless explicitly bound, "this" refers to the object that

owns the method being called.

To make this always refer to the instance object for a

method in the class (i.e. to get this to behave as you'd expect), you

can add the following line of code in the constructor:

this.methodName = this.methodName.bind(this);

CodePen solution

https://codepen.io/bee-arcade/project/editor/XqGzeD/

Object-oriented photo album

Let's look at an object-oriented version of the photo album:

CodePen / Debug

Album

ModalScreen

ModalPhoto

ThumbnailThumbnailThumbnailThumbnailThumbnail

Has a list of
Thumbnails

Has a ModalScreen

Has a ModalPhoto

https://codepen.io/bee-arcade/project/editor/AbJmLA/#
https://0851ba8817224b3f8d17e7221ae2c63f.production.codepen.codes/

