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A quick google search on “core computer science concepts”:

Core Concept #1 - Algorithms and Data Structures
1.1 Big O Notation
1.2 Sorting Algorithms
1.3 Recursion …

A defining aspect of our field



Purpose of asymptotic (big-O) analysis:
+ yes
1. Abstraction : avoid details
2. Guidance : towards a good algorithm
3. Scalability :  how will cost grow with size
4. Justify : algorithms, data structures and techniques

- no
1. Runtime : how fast will it run on my x247mpq-7rl-v3
2. Fine Tuning : lets get the last 10%
3. Fine Details : lets strip a log* n off of an n2 bound (my opinion)



Why is algorithm analysis so “successful”?

The random access machine (RAM)
A great bridging model, 
i.e., a great abstraction.

  RAM
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The good, the bad and the ugly
Good : sorting, BFS, DFS, balanced trees, Dijkstra’s, DP, hash tables, Delaunay 
triangulation, edit distance, ...

Bad: Matrix multiplication

Ugly: SAT solving

void DFS(int v, graph G, bool* visited) {
    visited[v] = true;
    visit(v);
    for (int u : G.adj[v])
  if (!visited[u]) DFS(u, G, visited);
}

- Simple analysis
- Simple code
- Runs fast



Side bar: Adding locality (and other features)
The IO-model and cache-oblivious algorithms
No change to code, just analysis

● Block size B, Cache size M

● Matrix multiply triply nested loops:

● Matrix multiply block recursive:

Many algorithms have been analyzed in the model, and leads to very cache 
friendly algorithms.

Can add read-write asymmetry, and other factors



Can we get the same “ecosystem” for parallelism
The ???
A great bridging model, 
i.e., a great abstraction for parallelism

or give up?
  ????
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Can we get the same “ecosystem” for parallelism
Measures of success:

● Every undergraduate data structures and algorithms course covers parallel 
algorithms throughout.

● All CS professionals know a collection of parallel techniques and algorithms
● All mainstream languages properly support parallelism
● Most library implementations are parallel
● Algorithms remain simple
● Parallel machine architecture helps simplify algorithm design



A brief history of parallel models
The 60s and 70s: early exploration

Network models (hypercube, butterfly, meshes, etc.), e.g. Batcher sort
● Too low level, not portable

Circuit models (Nick’s class, the NC-hierarchy, P-complete problems)
● Not programmable
● NC ignores polynomial factors in work
● Good parallel algorithms have polynomial depth



A brief history of parallel models
The 80s: The decade of the PRAM

100s of papers on the topic

Many cool ideas: Pointer jumping, random mate, random sampling, euler tour 
trees, scan, cascading, contraction

Very little code:
● Overly synchronous
● Not well suited for nested parallelism (e.g. parallel D&C)
● Ignores communication



A brief history of parallel models
The 80s: The decade of the PRAM

100s of papers on the topic

Many cool ideas: Pointer jumping, random mate, random sampling, euler tour 
trees, scan, cascading, contraction

Real problem is assuming P synchronous processors
● User needs to write their own “scheduler”



A brief history of parallel models
The 90s: The PRAM gone afoul 

The log* failure: focus on non-robust details of the PRAM

Various more “realistic” models: 
● BSP, LogP : account for communication, but too synchronous, and pain 

to design algorithms for
● asynchronous PRAM : suffer some of the same problems as PRAM

Nested parallel (fork/join, work-depth model) : will come back to



A brief history of parallel models
The 00s+: special purpose 

GPU Models:
● To many details for a general model

Map-reduce models, e.g. MPC: 
● Bulk synchronous is limiting 
● Not show to lead to efficient algorithm design

Domain specific models
● Not general



Based on this experience, what would it take?
● High level of abstraction 
● Simple code in familiar languages
● Nested parallelism
● Adaptable to account for locality
● More use of collection-based operations
● More use of higher-order functions (and lambda’s)
● Adaptable to account for locality
● Architecture buy in
● Faculty buy in (the hardest part)
● Other suggestions: ???



Claim: we have a solution, at least in a bounded context (modulo “faculty buy in”)

● i.e. shared memory, or shared address space multicore machines

Thread based fork-join, ie. work-depth, models (binary forking model)



The binary forking model
Computation model:
● A set of threads each acting like a RAM on a shared memory
● One initial thread.
● A fork instruction creates two identical child threads
● When both children finish, the parent continues 

Initial thread

Memory consistency:
● Nondeterministic total order of operations consistent with 

partial order defined by the fork-joins.
● Typically use race-free algorithms, which are deterministic
● Can include test-and-set and compare-and-swap.



The binary forking model
Computation model:
● A set of threads each acting like a RAM on a shared memory
● One initial thread.
● A fork instruction creates two identical child threads
● When both children finish, the parent continues 

Initial thread

Cost model:
● Work = total number of instructions
● Span = longest dependence chain
● Parallelism = Work/Span (approx # of processors can utilize)



On top of this, basic collection operations
Map, filter, reduce, scan, group_by, count_by, flatten, find_first, tabulate

Most can be implemented in O(n) work and O(log n) span.  

Many of these are already libraries routines in Python, C++, Java, etc  (although 
not necessarily parallel)



What about locality
Achievable:
There is an inherent “sequential” left-to-right  order.

Analyze cache cost in this order. 
E.g. block recursive matrix multiply has same cost as sequentially

This leads to (provably) good behavior when simulated on various parallel cache 
hierarchies with shared and distributed caches, e.g.:
● Shared caches : use priority first scheduling
● Distributed Caches : use work-stealing
● Hierarchical caches : use space-bounded schedulers



Is binary forking a good model?
Based on this over the past 10 years we have:

Implemented a basic libraries of primitive operations (parlay, ligra, pam)

Over 50 algorithms in a wide variety of fields, for almost all
● Use ideas from algorithms community (e.g. PRAM)
● Show asymptotic bounds
● Run compared to best sequential algorithms
● Run compared to best other parallel algorithms

Used it in our intro data structures course for almost 10 years



Algorithms (implementation + cost analysis)
Sorting and searching [SPAA10, SPAA16, PPOPP18]:
● (8) Quicksort, merge, mergesort, sample sort, integer sort, hash map, binary 

search trees

Graph algorithms [PPOPP13,SPAA14,SODA15,SPAA17,SPAA18,VLDB20]:
● (20+) BFS, shortest paths, connectivity, spanning forest, biconnectivity, 

strongly connected components, minimum spanning forest, maximal 
independent set, maximal matching, graph coloring, k-core, approximate 
densest sugraph, triangle counting, widest path, betweenness centrality, 
spanners, low-diameter decomposition, pagerank



Algorithms (implementation + cost analysis)
String algorithms [JDA17,TOPC14] : 
● (9) suffix arrays, suffix trees, wavelet tree, word count, BW, invertex index, 

LCP, knuth-morris-pratt hashing, huffman coding

Geometry algorithms [SPAA20, JACM20, Alenex19]:
● (7) Delaunay triangulation, convex hull, mesh refinement, k-nearest neighbor, 

2d range search, 2d line intersection, 2d rectangle intersection

Database queries [VLDB20]
● (22) All 22 of the TPCH benchmarks



All are fastest or close to fastest on shared memory machines.   

All have simple theoretical bounds in terms of work and span (not all are 
polylogarithmic span, and some depend on input characteristics, e.g. graph 
diameter)

In many cases also faster than much larger distributed memory machines.



Graph algorithms results (SPAA18)





But is the code simple?
Some examples:

● Quicksort
● BFS
● Graph connectivity
● Merging



Quicksort
void quicksort(slice In, slice Out, Comp f, bool inplace) {                                         
  long n = In.size();                                                                                     
  if (n < Threshold) {                                                                                    

std::sort(In.begin(), In.end(), f);                                                                   
if (!inplace) copy(In, Out);                                                                          

  } else {                                                                                                
double p = In[n/2];                                                                                   
auto sizes = bucket_by(In, Out, [] (auto k) {return f(k,p) ? 0 : f(p,k) ? 2 : 1;}, 3);
long l = sizes[0]; long h = sizes[0] + sizes[1];                                                      
par_do([&]() {quicksort(Out.cut(0, l), In.cut(0, l), f, !inplace);},                                  

                    [&]() {quicksort(Out.cut(h, n), In.cut(h, n), f, !inplace);});                                 
if (inplace) copy(Out.cut(l,h), In.cut(l,h));                                                         

  }}

W(n) = O(n log n)  w.h.p
S(n) = O(log2 n)  w.h.p.

Partition into <, =, >



Breadth First Search
vSequence BFS(vertex start, const Graph &G) {                                                              
  size_t n = G.numVertices();                                                                             
  vSequence parent(n, -1);                                                                              
  parent[start] = start;                                                                                  
  auto frontier = ligra::vertex_subset(start);                                                            
                                                                                                          
  while (frontier.size() > 0)                                                                             

frontier = ligra::edge_map(frontier,                                                                  
             [&] (vID v) { return parent[v] == -1;},                                                  
             [&] (vID u, vID v) { return CAS(parent[v], -1, u);});                                    
  return parent;                                                                                          
}

W(n,m) = O(m) 
S(n,m) = O(d log n)  
n vertices, m edges, diameter d

Maps over out-edges of each 
vertex in the frontier



Graph Connectivity
vSequence Connectivity(Graph& G) {
  size_t n = G.n;
  vSequence clusters = LDD(G);
  long num_clusters = RelabelIds(clusters);
  auto [G_clusters, flags, mapping] = Contract(G, clusters, num_clusters);
  if (G_clusters.m == 0) return clusters;
  auto new_labels = Connectivity(G_clusters, beta, level + 1);

  parallel_for(0, n, [&] (size_t i) {
     vtxid cluster = clusters[i];
     vtxid gc_cluster = flags[cluster];
     if (gc_cluster != flags[cluster + 1])
  clusters[i] = mapping[new_labels[gc_cluster]] });
  return clusters;
}

W(n,m) = O(m)  whp
S(n,m) = O(log2 n)  whp
n vertices, m edges, diameter d



Merging (Divide and Conquer)
void merge(Slice A, Slice B, Slice R, F f) {                                                              
  long nA = A.size(); long nB = B.size(); long nR = nA + nB;  
  if (nR < Threshold) std::merge(A.begin(), A.end(), B.begin(), B.end(), R.begin(), f);                                   
  else if (nA == 0) copy(B, R);                                                                           
  else if (nB == 0) copy(A, R);                                                                           
  else {                                                                                                  

long mA = nA / 2;                                                                                     
long mB = std::lower_bound(B.begin(), B.end(), A[mA], f);                                           
long mR = mA + mB;                                                                                    
par_do([&]() { merge(A.cut(0, mA), B.cut(0, mB), R.cut(0, mR), f);},                                  

                    [&]() { merge(A.cut(mA, nA), B.cut(mB, nB), R.cut(mR, nR), f);}};  
  }}                                                     

W(n) = O(n)
S(n) = O(log2 n) 

A

B
binary search



Summary:
● Simple code
● Not very different from sequential algorithms
● Common techniques (D&C, contraction, …)
● Easy analysis (a bit more than for seq algorithms)
● Can analyze for locality (spatial + temporal) with same code
● Leads to fast code
● Supported by existing machines

Caveats : not directly relevant to all parallel machines



Purpose of asymptotic (big-O) analysis:
+ yes
1. Abstraction : avoid details
2. Guidance : towards a good algorithm
3. Scalability :  how will cost grow with size
4. Justify : algorithms, data structures and techniques

- no
1. Runtime : how fast will it run on my x247mpq-7rl-v3
2. Fine Tuning : lets get the last 10%
3. Fine Details : lets strip a log* n off of an n2 bound (my opinion)



Can we get the same “ecosystem” for parallelism
The binary-forking model
A great bridging model, at least for 
some class of machines.

Binary
Forking 
Model

Programming 
Languages

  Scheduler

 Algorithms
 + Analysis

Machines
shared address 
space



Education
We have been teaching this at CMU for almost 10 years now (started in 2012).

All our sophomores take a course “parallel and sequential data structures and 
algorithms” that teaches in this style.

Teach all the standard ideas + parallelism: D&C, DP, big-O, recurrences, DFS, 
BFS, Dijkstra’s, ...

Parallelism is not hard for them.   



What about other types of machines?
GPUs : becoming more like CPUs (perhaps they will become the same)

Distributed memory: seems hard to get General purpose clean model, but having 
a shared address space should be fine.  Race free programs do not need cache 
coherence (flush when needed).

Processing in memory: some recent work



Conclusions
Question: can parallel algorithms/analysis replace sequential algorithms/analysis, 
or ideally be part of the same “ecosystem”?

Binary forking model is a step towards the goal:
● Integrates well with sequential algorithms
● Can incorporate locality
● Simple code, and fast implementations

But some caveats
● Does not cover all machines
● Getting community buy in to parallelism is hard



Can we get the same “ecosystem” for parallelism
Measures of success:

● Every undergraduate data structures and algorithms course covers parallel 
algorithms throughout.

● All CS professionals know a collection of parallel techniques and algorithms
● All mainstream languages properly support parallelism
● Most library implementations are parallel
● Algorithms remain simple
● Parallel machine architecture helps simplify algorithm design



Word Counts
auto wordCounts(charseq const &s) {                                                                       
  auto str = parlay::map(s, [] (char c) {return std::isalpha(c) ? c : 0;}                                     
  auto words = parlay::tokens(str, [] (char c) {return c == 0;});                                         
  return parlay::count_by_key(words);                                                                     
}

W(n) = O(|s|)
S(n) = O(|s|1/2) 

Declares whitespace


