1 of 23

Задания на смекалку ЕГЭ по математике базового уровня. Задания №20

Кривошеин О.В. Учитель математики ОУ «Харламовская школа»

2 of 23

Спецификация контрольных измерительных материалов ЕГЭ по математике. Базовый уровень.�Задание 20.

Уметь строить и исследовать простейшие математические модели

3 of 23

Улитка на дереве

ДЕМО. Улитка за день заползает вверх по дереву на 3 м, а за ночь спускается на 2 м. Высота дерева 10 м. За сколько дней улитка доползёт от основания до вершины дерева?

Решение. Улитка за день заползает вверх по дереву на 3 м, а за ночь спускается на 2 м. Итого, за сутки она продвигается на 3 – 2 = 1 метр.�За 7 суток она поднимется на 7 метров. �На восьмой день она заползёт вверх еще на 3 метра и впервые окажется на высоте 7 + 3 = 10 (м), т.е. на вершине дерева.

Ответ: 8

http://krivoleg.blogspot.ru/2015/10/blog-post_21.html

4 of 23

Бензоколонки

На кольцевой дороге расположены четыре бензоколонки: A, B, C и Д. Расстояние между A и B — 35 км, между A и C — 20 км, между C и Д —20 км, между Д и A — 30 км (все расстояния измеряются вдоль кольцевой дороги в кратчайшую сторону). Найдите расстояние между B и C. Ответ дайте в километрах.

Решение. Начертим окружность и расположим точки (бензоколонки)так, чтобы расстояния соответствовали условию. Заметим, что все расстояния между точками А, С и D известны. АС =20, АD=30, СD=20. Отметим точку А. От точки А по часовой стрелке отметим точку С, помним, что АС=20. Теперь будем отмечать точку D, которая лежит от А на расстоянии 30, это расстояние нельзя откладывать от А по часовой стрелке, так как тогда получится расстояние между С и D равно 10, а по условию СD=30. Значит от А до D надо двигаться против часовой стрелки, отмечаем точку D. �Так как СD=20, то длина всей окружности равна 20+30+20=70.

Так как АВ=35, то точка В диаметрально противоположна точке А. Расстояние от С до В будет равно 35-20=15.

Ответ 15.

5 of 23

В кинозале

За­да­ние 20 № 506732. В пер­вом ряду ки­но­за­ла 24 места, а в каж­дом сле­ду­ю­щем на 2 боль­ше, чем в преды­ду­щем. Сколь­ко мест в вось­мом ряду?

Решение. 1 способ. Просто считаем сколько мест в рядах до восьмого:

1 – 24

2 – 26

3 – 28

4 – 30

5 – 32

6 – 34

7 – 36

8 – 38.

Ответ 38.

Решение. 2 способ. Замечаем, что количество мест в рядах составляет арифметическую прогрессию с первым члено 24 и разность равной 2.

По формуле n-го члена прогрессии находим восьмой член

а8= 24 + (8 – 1)*2 = 38.

Ответ 38.

6 of 23

Грибы в корзине

В кор­зи­не лежат 50 гри­бов: ры­жи­ки и груз­ди. Из­вест­но, что среди любых 27 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 25 гри­бов хотя бы один груздь. Сколь­ко ры­жи­ков в кор­зи­не?

Решение. Из условия , что среди любых 27 гри­бов име­ет­ся хотя бы один рыжик следует – количество груздей не больше 26.

Из второго условия, что среди любых 25 гри­бов хотя бы один груздь, следует - количество рыжиков не больше 24. Так как всего грибов – 50, то рыжиков 24, а груздей – 26.

Ответ 24.

7 of 23

Кубики в ряд

Сколь­ки­ми спо­со­ба­ми можно по­ста­вить в ряд два оди­на­ко­вых крас­ных ку­би­ка, три оди­на­ко­вых зелёных ку­би­ка и один синий кубик?

Решение. Если пронумеровать все кубики числами от одного до шести (не учитывая, что имеются кубики разного цвета), то получим общее число перестановки кубиков:�Р(6)=6*5*4*3*2*1=720�Теперь вспомним, что имеются 2 кубика красного цвета и перестановка их местами (Р(2)=2*1=2) не даст нового способа, поэтому полученное произведение надо уменьшить в 2 раза.�Аналогично, вспоминаем, что у нас имеются 3 кубика зелёного цвета, поэтому придётся полученное произведение уменьшить ещё и в 6 раз (Р(3)=3*2*1=6)�Итак, получим общее число способов расстановки кубиков 60.�Ответ: 60.

8 of 23

На бе­го­вой до­рож­ке

За­да­ние 20 № 507073. Тре­нер по­со­ве­то­вал Ан­дрею в пер­вый день за­ня­тий про­ве­сти на бе­го­вой до­рож­ке 15 минут, а на каж­дом сле­ду­ю­щем за­ня­тии уве­ли­чи­вать время, про­ведённое на бе­го­вой до­рож­ке, на 7 минут. За сколь­ко за­ня­тий Ан­дрей про­ведёт на бе­го­вой до­рож­ке в общей слож­но­сти 2 часа 25 минут, если будет сле­до­вать со­ве­там тре­не­ра?

Решение. 1 способ. Замечаем, что надо найти сумму арифметической прогрессии с первым членом 15 и разность равной 7. По формуле суммы n первых членов прогрессии Sn=(2a1+(n-1)d)*n/2 имеем

145=(2*15+(n–1)*7)*n/2, 290=(30+(n–1)*7)*n, 290=(30+7n–7)*n, 290=(23+7n)*n, 290=23n+7n2, 7n2+23n-290=0, n=5.

Ответ 5.

Решение. 2 способ. Более трудоёмкий.

1-15-15

2-22-37

3-29-66

4-36-102

5-43-145.

Ответ 5.

9 of 23

Меняем монеты

За­да­ние 20. В об­мен­ном пунк­те можно со­вер­шить одну из двух опе­ра­ций: за 2 зо­ло­тые мо­не­ты по­лу­чить 3 се­реб­ря­ные и одну мед­ную; за 5 се­реб­ря­ных монет по­лу­чить 3 зо­ло­тые и одну мед­ную.

У Ни­ко­лая были толь­ко се­реб­ря­ные мо­не­ты. После не­сколь­ких по­се­ще­ний об­мен­но­го пунк­та се­реб­ря­ных монет у него стало мень­ше, зо­ло­тых не по­яви­лось, зато по­яви­лось 100 мед­ных. На сколь­ко умень­ши­лось ко­ли­че­ство се­реб­ря­ных монет у Ни­ко­лая?

Решение. Из условия мы имеем равенства (сокращения: зм - золотые монеты, см – серебряные монеты, мм – медные монеты)

2 зм = 3 см + 1мм,

5 см = 3 зм + 1мм. Так как у Николая были только серебряные монеты, а после обмена остались серебряные и появились медные, то все золотые, которые появились в ходе обмена, были опять обменены. Из второго равенства мы видим, что за десять серебряных монет он получал 6 золотых и 2 медных.

10 см = 6 зм + 2мм. Но из первого равенства находим, что за 6 золотых монет он получает 9 серебряных и 3 медных.

6 зм = 9 см + 3мм. В итоге этих обменов у него вместо десяти серебряных монет осталось 9, но появилось 5 медных. То есть одна серебряная монета равна 5 медным. Так как у него появилось 100 медных монет, то он отдал за них 20 серебряных.

Ответ 20. http://krivoleg.blogspot.ru/2015/09/blog-post.html

10 of 23

Хозяин договорился

  Хозяин договорился с рабочими, что они выкопают ему колодец на следующих условиях: за первый метр он заплатит им 3700 рублей, а за каждый следующий метр — на 1700 рублей больше, чем за предыдущий. Сколько денег хозяин должен будет заплатить рабочим, если они выкопают колодец глубиной 8 метров?

Решение.

Из условия понятно, что по­сле­до­ва­тель­ность цен за каждый выкопанный метр является ариф­ме­ти­че­ской про­грес­сией с пер­вым чле­ном а1= 3700 и раз­но­стью d=1700. Сумма пер­вых n чле­нов ариф­ме­ти­че­ской про­грес­сии вы­чис­ля­ет­ся по фор­му­ле Sn = 0,5(2a1 + (n – 1)d)n. Подставляя исходные данные, получаем:

S10 = 0,5(2*3700 + (8 – 1)*1700)*8 = 77200.

Таким образом, хо­зя­ин дол­жен будет за­пла­тить ра­бо­чим 77200 руб.

Ответ: 77200. 

http://krivoleg.blogspot.ru/2015/10/blog-post_29.html

11 of 23

Вода в котловане

В ре­зуль­та­те па­вод­ка кот­ло­ван за­пол­нил­ся водой до уров­ня 2 метра. Стро­и­тель­ная помпа не­пре­рыв­но от­ка­чи­ва­ет воду, по­ни­жая её уро­вень на 20 см в час. Под­поч­вен­ные воды, на­о­бо­рот, по­вы­ша­ют уро­вень воды в кот­ло­ва­не на 5 см в час. За сколь­ко часов ра­бо­ты помпы уро­вень воды в кот­ло­ва­не опу­стит­ся до 80 см?

Решение. В результате работы насоса и подтопления почвенными водами уровень воды в котловане понижается на 20-5=15 сантиметров за час. Чтобы уровень снизился на 200-80=120 сантиметров необходимо 120:15=8 часов.

Ответ 8.

12 of 23

Бурим скважину

Неф­тя­ная ком­па­ния бурит сква­жи­ну для до­бы­чи нефти, ко­то­рая за­ле­га­ет, по дан­ным гео­ло­го­раз­вед­ки, на глу­би­не 3 км. В те­че­ние ра­бо­че­го дня бу­риль­щи­ки про­хо­дят 300 мет­ров в глу­би­ну, но за ночь сква­жи­на вновь «за­или­ва­ет­ся», то есть за­пол­ня­ет­ся грун­том на 30 мет­ров. За сколь­ко ра­бо­чих дней неф­тя­ни­ки про­бу­рят сква­жи­ну до глу­би­ны за­ле­га­ния нефти?

Решение. Учитывая заиливание скважины, в течении суток проходят 300-30=270 метров. Значит за 10 полных суток будет пройдено 2700 метров и за 11-й рабочий день будет пройдено ещё 300 метров.

Ответ 11.

13 of 23

На по­верх­но­сти гло­бу­са

За­да­ние 20 № 509645. На по­верх­но­сти гло­бу­са фло­ма­сте­ром про­ве­де­ны 17 па­рал­ле­лей и 24 ме­ри­ди­а­на. На сколь­ко ча­стей про­ведённые линии раз­де­ли­ли по­верх­ность гло­бу­са? Ме­ри­ди­ан — это дуга окруж­но­сти, со­еди­ня­ю­щая Се­вер­ный и Южный по­лю­сы. Па­рал­лель — это окруж­ность, ле­жа­щая в плос­ко­сти, па­рал­лель­ной плос­ко­сти эк­ва­то­ра.

Решение. Одна параллель разбивает поверхность глобуса на 2 части. Две на три части. Три на четыре части и т. д. 17 параллелей разбивают поверхность на 18 частей.

Проведём один меридиан, и получим одну целую (не разрезанную) поверхность. Проведём второй меридиан и у нас уже две части, третий меридиан разобьёт поверхность на три части и т. д. 24 меридиана разбили нашу поверхность на 24 части. Получаем 18*24=432. Все линии разделят поверхность глобуса на 432 части. 

Ответ 432.

14 of 23

Кузнечик прыгает

Задача 1. Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, сделав ровно 8 прыжков, начиная прыгать из начала координат?

Решение:

Немного подумав, мы можем за­ме­тить, что куз­не­чик может ока­зать­ся толь­ко в точ­ках с чётными ко­ор­ди­на­та­ми, по­сколь­ку число прыж­ков, ко­то­рое он де­ла­ет, чётно. Например, если он сделает пять прыжков в одну сторону, то в обратную сторону он сделает три прыжка и окажется в точках 2 или −2.

Мак­си­маль­но куз­не­чик может ока­зать­ся в точ­ках, мо­дуль ко­то­рых не пре­вы­ша­ет восьми. Таким об­ра­зом, куз­не­чик может ока­зать­ся в точ­ках: −8, −6, −4, −2, 0, 2, 4, 6 и 8; всего 9 точек.�Ответ 9.

http://krivoleg.blogspot.ru/2015/09/blog-post_18.html

15 of 23

Новые бактерии

Каж­дую се­кун­ду бак­те­рия де­лит­ся на две новые бак­те­рии. Из­вест­но, что весь объём од­но­го ста­ка­на бак­те­рии за­пол­ня­ют за 1 час. За сколь­ко се­кунд бак­те­рии за­пол­ня­ют по­ло­ви­ну ста­ка­на?

Решение. Вспомним, что 1 час = 3600 секундам. Через каждую секунду бактерий становится в два раза больше. Значит, чтобы из половины стакана бактерий получился полный стакан нужна всего 1 секунда. Поэтому стакан был заполнен на половину за 3600-1=3599 секунд.

Ответ 3599.

16 of 23

Делим числа

Про­из­ве­де­ние де­ся­ти иду­щих под­ряд чисел раз­де­ли­ли на 7. Чему может быть равен оста­ток?

Решение. Задача простая, так как среди десяти подряд идущих натуральных чисел хотя бы одно делится на 7. Значит и всё произведение будет делиться на 7 без остатка. То есть остаток равен 0.

Ответ 0.

Ответ 9.

17 of 23

Где живёт Петя?

Задача 1. В доме, в котором живёт Петя, один подъезд. На каждом этаже по шесть квартир. Петя живёт в квартире № 50. На каком этаже живёт Петя?

Решение: Делим 50 на 6, получаем частное 8 и 2 в остатке. Это значит, что Петя живёт на 9 этаже. Ответ 9.

Задача 2. Во всех подъездах дома одинаковое число этажей, и на всех этажах одинаковое число квартир. При этом число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного. Сколько этажей в доме, если всего в нём 455 квартир?

Решение: Решение этой задачи вытекает из разложения числа 455 на простые множители. 455 = 13*7*5. Значит в доме 13 этажей, по 7 квартир на каждом этаже в подъезде, 5 подъездов.

Ответ 13.

http://krivoleg.blogspot.ru/2015/09/blog-post_13.html

18 of 23

Где живёт Петя?

Задача 3. Саша пригласил Петю в гости, сказав, что живёт в восьмом подъезде в квартире № 468, а этаж сказать забыл. Подойдя к дому, Петя обнаружил, что дом двенадцатиэтажный. На каком этаже живёт Саша? (На всех этажах число квартир одинаково, номера квартир в доме начинаются с единицы.)

Решение: Петя может подсчитать, что в двенадцатиэтажном доме в первых семи подъездах 12*7=84 площадки. Дальше, перебирая возможное количество квартир на одной площадке, можно увидеть, что их меньше шести, так как 84*6 = 504. Это больше 468. Значит на каждой из площадок 5 квартир, тогда в первых семи подъездах 84*5 =420 квартир. 468 – 420 = 48, то есть Саша живёт в 48 квартире в 8 подъезде (если бы нумерация была с единицы в каждом подъезде). 48:5 = 9 и 3 в остатке. Таким образом Сашина квартира на 10 этаже.

Ответ 10.

http://krivoleg.blogspot.ru/2015/09/blog-post_13.html

19 of 23

Что у нас на обед?

Решение. Если мы пронумеруем каждый салат, первое, второе, десерт, то:

с 1 салатом, 1 первым,1 вторым можно подать один из 4-х десертов. 4 варианта. Со вторым вторым тоже 4 варианта и т.д. Всего получим 6*3*5*4=360.

Ответ 360.

20 of 23

Врач прописал

Наполнить бак

21 of 23

Задания для самостоятельной работы

  • В ре­зуль­та­те па­вод­ка кот­ло­ван за­пол­нил­ся водой до уров­ня 2 метра. Стро­и­тель­ная помпа не­пре­рыв­но от­ка­чи­ва­ет воду, по­ни­жая её уро­вень на 20 см в час. Под­поч­вен­ные воды, на­о­бо­рот, по­вы­ша­ют уро­вень воды в кот­ло­ва­не на 5 см в час. За сколь­ко часов ра­бо­ты помпы уро­вень воды в кот­ло­ва­не опу­стит­ся до 80 см?
  • Куз­не­чик пры­га­ет вдоль ко­ор­ди­нат­ной пря­мой в любом на­прав­ле­нии на еди­нич­ный от­ре­зок за пры­жок. Сколь­ко су­ще­ству­ет раз­лич­ных точек на ко­ор­ди­нат­ной пря­мой, в ко­то­рых куз­не­чик может ока­зать­ся, сде­лав ровно 11 прыж­ков, на­чи­ная пры­гать из на­ча­ла ко­ор­ди­нат?
  • Хозяин договорился с рабочими, что они выкопают ему колодец на следующих условиях: за первый метр он заплатит им 4200 рублей, а за каждый следующий метр — на 1300 рублей больше, чем за предыдущий. Сколько денег хозяин должен будет заплатить рабочим, если они выкопают колодец глубиной 11 метров?
  • На глобусе фломастером проведены 24 параллели (включая экватор) и 17 меридианов. На сколько частей проведённые линии разделяют поверхность глобуса?

22 of 23

Задания для самостоятельной работы

  • В кор­зи­не лежит 50 гри­бов: ры­жи­ки и груз­ди. Из­вест­но, что среди любых 28 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 24 гри­бов хотя бы один груздь. Сколь­ко груз­дей в кор­зи­не?
  • В кор­зи­не лежат 40 гри­бов: ры­жи­ки и груз­ди. Из­вест­но, что среди любых 17 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 25 гри­бов хотя бы один груздь. Сколь­ко ры­жи­ков в кор­зи­не?
  • В корзине лежат 25 грибов: рыжики и грузди. Известно, что среди любых 11 грибов имеется хотя бы один рыжик, а среди любых 16 грибов хотя бы один груздь. Сколько рыжиков в корзине?
  • Саша при­гла­сил Петю в гости, ска­зав, что живёт в де­ся­том подъ­ез­де в квар­ти­ре № 333, а этаж ска­зать забыл. По­дой­дя к дому, Петя об­на­ру­жил, что дом де­вя­ти­этаж­ный. На каком этаже живёт Саша? (На каж­дом этаже число квар­тир оди­на­ко­во, но­ме­ра квар­тир в доме на­чи­на­ют­ся с еди­ни­цы.)

23 of 23

Полезные ссылки