
Ed Crewe

Mocking for unit testing
cloud automation

clear-guest
user : guest
pwd: xRM4W4Cp

Why use mocking?

All software has external dependencies

For configuration automation - its raison d’etre is acting on external systems

Doing all development against the real world is expensive in time, resource and
hence money.

Unit test definition

‘... the smallest testable parts of an application, called units, are individually and
independently scrutinized ...’

Hence by definition unit testing requires code that enables independent testing.
Mocking enables that.

Python 3 unittest now includes mocks as standard in unittest.mock

So mocking saves money and is a cornerstone of proper unit testing.

Mocks, spies, fakes, stubs & dummys

Test doubles fall into 5 categories …

● Fakes have working implementations, but not fit for

production

● Spies are partial Mocks that patch the real object to

check expectations

● Stubs provide canned answers to calls

● Mocks are objects pre-programmed with the expected

tested behaviour

● Dummy objects are unused but just fulfill the API

Real world
Dependency

Mocking benefits and counter arguments
For automation code the old adage ‘untested code is broken
code’, equates to untested code is broken systems.

● Mocking from the start of coding ensures dependency
isolation

● Mocking enables proper unit testing, ie. that you are
writing tests that document the behaviour of each
component of your code.

● Mocking makes tests run fast and run anywhere.

● Bad simulation - tests pass, but not reality.
● The over use of mock objects can increase test

maintenance
● The real system is too complex to mock = takes too long

+

-

Fakes

Fakes are probably the type of mock that most people have come
across.

Standard testing for database centric applications is faking
example storage state via test fixtures and a test database that is
built and destroyed by the test harness.
(eg. Django test class with its fixture list property of json data)

Implement the bulk of the specific API of a dependent service

For automation there are fakes /
simulators for the APIs to the hardware
that is being configured, for example
network routers.

Common dependent services with
complex APIs may come with a fake
library for developing against.

Stubs

Stubs can be quite simple, just providing a hard coded single state
response to a method.
Or they can be sophisticated with lots of data fixtures to provide
different state responses and allow editing of data / state.

Simulate parts of the API of one or more services

So the route to stubs is to design any code
that uses dependencies as separate classes
for that dependency.

Then stubs become can be a subclass the
dependency class with replaced edit and read
methods.

With ubiquitous RESTful micro services
common JSON dependency outputs makes
stubbing easier.

Service virtualisation automatic stubs

In the world of service orientated architectures mocking all
dependencies is a burden, hence stubs may be replaced with service
virtualization

Service virtualisation is the use of toolkits to easily configure and
generate your stubbed services

Simple toolkits speed manual fixture serving such as pretenders or
mountebank

Or test libraries that can automatically build stubs by probing the
dependent services, such as betamax for HTTP.

Full toolkits with record, intercept and replace
workflows for simulating dependent services
Mirage, Parasoft virtualize, Mockable etc.

https://en.wikipedia.org/wiki/Service_virtualization
http://pretenders.readthedocs.io/en/latest/
http://www.mbtest.org/
https://semaphoreci.com/community/tutorials/testing-python-requests-with-betamax
https://github.com/SpectoLabs/mirage/wiki/Introduction
https://www.parasoft.com/product/parasoft-service-virtualization/
https://www.mockable.io/

Mock objects

Whether to action -> assert OR record -> replay

Replace dependency classes with simulations in test code

There are two standard patterns for mock libraries

action>assert is the usual unit test pattern

1. Built with a set of assertions.
2. Mock passed to the subject object / code under test,

which changes its state
3. State verification - this is the classical test approach (how fakes, stubs are used)

record>replay is the most common requiring a mockist / BDD approach

1. Built by recording interactions with the mock
2. Mock is passed to SUT
3. Mock validate method to test behavioural contract adhered to by the SUT

NB: Spies just check the contract of a real object, although they may do stubbing too.

Use cases - mocking for cloud automation

For our examples lets take three different stages of cloud
automation and see how we can use mocking to help develop
them ...

1. Firstly we need to setup up the switches and configure the
network

2. Boot up the compute nodes. Maybe just provision them as
bare metal nodes.
Or we could add a hypervisor to each for running various OS
via virtualisation.

3. Maybe we want to use a subset of nodes from each rack as
Docker hosts - so we can provide a containerization service,
and orchestrate across these hosts with Kubernetes or Mesos.

Stub - adding a bespoke mock class

Stage 2 bootstrap a compute node with its IPMI out of band
management system.
So there is a standard linux command line tool for IPMI - so
maybe we use that directly or the python package for it

class IlomHelper(object):
 """ Class that wraps the external dependency of compute nodes IPMI client"""
 fixture = "ilom_commands.json"

 def configure(self, nodes, command):
 """ Do stuff to the rack of compute nodes - eg force_pxe, bootdev etc."""
 …
 return self.as_json(response)

class IlomHelperMock(MockBase):
 """ Class that mocks IPMI client responses data"""

 def configure(self, nodes, command):
 """ Do stuff to the rack of compute nodes - eg force_pxe, bootdev etc. """
 ...
 return self.json_fixture(nodes, command)

 The bespoke MockBase loads up fixtures,
 enables state editing etc. to generate JSON
 responses

 All public dependency action methods are
 replaced with mock implementations

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://linux.die.net/man/1/ipmitool
https://pypi.python.org/pypi/python-ipmi

AutoStub / Service virtualisation 1 - JunOS

● Stage 1 - network automation - use zero touch protocol (ZTP) to fire up our
routers

● Now we need to query our routers configuration, to validate it.
● Using JunOS Restful service on our routers. Code that checks the interfaces

data on a router and modifies it for consumption by other parts of our code ...

class JunOSRest(object):

 def set_session(self, device, user, pwd):
 """Establish an authenticated requests session"""
 self.session = requests.Session()
 ...

 def get_description_info_for_interfaces(self):
 """Get current interface description for each interface"""
 url = RPC_URL_FORMAT % (self.device, 'get-interface-information', 'xml')
 http_resp = self.session.get(url,
 params={'descriptions': ''},
 stream=True)
 http_resp.raise_for_status()
 return self.process_to_list(http_resp)

AutoStub / Service virtualisation 2 - betamax

Betamax enables real world HTTP service recording to generate stubs with fixtures -
where the fixture data is called a cassette. It depends on the requests library and
borrows session to intercept requests and save the output to fixtures … .

import betamax

with betamax.Betamax.configure() as config:

 config.cassette_library_dir = 'tests/cassettes'

 config.default_cassette_options['record_mode'] = 'once'

class TestJunOSRest(object):

 def test_interfaces(self):

 junos_rest = JunOSRest(device, user, pwd)

 recorder = betamax.Betamax(junos_rest.session)

 with recorder.use_cassette('JunOS_interfaces'):

 interfaces = junos_rest.get_descrip_info_for_interfaces()

 assert isinstance(interfaces, list)

https://pypi.python.org/pypi/betamax/0.8.0
http://docs.python-requests.org/

Fake - JunOS Juniper Olive / vSRX switch simulators

So for our example 1. lets continue with Juniper hardware for our network - Juniper supplies fakes -
Olive is the generic router OS and vSRX simulates its Firefly firewall hardware (Olive with extras) -
so we can use a training lab vagrant config to vagrant up four Firefly VMs.

We can now log in to one of our routers with

 ecrewe-mac> vagrant ssh vsrx2
--- JUNOS 12.1X47-D15.4 built 2014-11-12 02:13:59 UTC

Run up Juniper’s standard command line interface

 root@vsrx2% cli

Now we can read and edit our configuration - eg. add an ip to the interface with set

root@vsrx2> show configuration interfaces ge-0/0/2
unit 0 {
 family inet {
 address 10.99.12.2/24;
 }
}

… OK so we have a fake we can now write tests against it just by using a test harness config that uses the fake
switches rather than real hardware (NB: vagrant ssh-config to generate configs for ssh login by software on host)

root@vsrx2> edit
Entering configuration mode

[edit]
root@vsrx2# set interfaces ge-0/0/2 unit 0 family inet address
10.99.66.1/24
root@vsrx2# commit and-quit

http://juniperolive.blogspot.in/
https://github.com/JNPRAutomate/vagrant-junos
https://github.com/JNPRAutomate/vagrant-junos

Spy 1 - using mock to spy on a third party library

Lets spy on the third party library that is used to interact with a Juniper switch, PyEZ, so
pip install junos-eznc and mock … a class to configure a rack of routers via LLDP, this needs
to perform a set of actions in an ordered sequence on each router ...

from jnpr.junos import Device

class RouterManager(object):
 """Manages a rack’s routers configuration … simplified code"""
 routers = {}

 def __init__(self, router_ports=ROUTER_PORTS):
 for key, port in router_ports.items():
 self.routers[key] = Device(host=key, user='root',
 ssh_private_key_file=KEYFILE % key, port=port)

 def lldp_update_config(self):
"""Runs LLDP* neighbour discovery and config check - update if not matching"""

 for hostname, router in self.routers.items():
 router.open()

 lldp_info = self.get_lldp_neighbours(router)
 desc_info = self.get_descrip_for_interfaces(router)
 changes = self._check_lldp_changes(lldp_info, desc_info)
 status = self._merge_config(router, template, changes)
 router.close()

* Link Layer Discovery Protocol

https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#overview
https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

…
call.logger.warning('Connecting to vsrx2...'),
 call.logger.warning('Getting LLDP information from vsrx2...'),
 call.get_lldp_neighbors(device=Device(127.0.0.1)),
 call.logger.warning('Getting interface descriptions from vsrx2...'),

call.get_description_info_for_interfaces(device=Device(127.0.0.1
)),
 call.check_lldp_changes(<Mock
name='mock.get_lldp_neighbors()' id='4520164880'>, <Mock
name='mock.get_description_info_for_interfaces()'
id='4520164944'>),
 call.load_merge_template_config(device=Device(127.0.0.1),
template_path='templates/interface_descriptions_template.xml',
template_vars={'descriptions': <Mock
name='mock.check_lldp_changes()' id='4520276112'>}),
 call.logger.warning(' Successfully committed configuration
changes on vsrx2.'),
 call.logger.warning(' Closing connection to vsrx2.'),
 call.logger.warning('Connecting to vsrx3...'),
 call.logger.warning('Getting LLDP information from vsrx3...'),
 call.get_lldp_neighbors(device=Device(127.0.0.1)),
 call.logger.warning('Getting interface descriptions from vsrx3...'),
...

Spy 2 - using mock to spy on a third party library

So we want to spy on this router manager class and check that our internal methods are
called in the right order...

import mock

sys_under_test = RouterManager()

Make a new spy that duplicates the API of our router manager

spy = mock.Mock(spec=sys_under_test)

give the spy the devices so it can make calls with them

spy.routers = sys_under_test.routers

test the parent method call that uses sequential sub-methods passing in spy as self

RouterManager.lldp_update_config(spy)

called = [str(call).split('(')[0] for call in spy.mock_calls]

specify the order that we need the methods called in
call_order = ['call.get_lldp_neighbours', 'call.get_descrip_for_interfaces',
 'call._check_lldp_changes', 'call._merge_config']
Check the internal methods are called in the correct order
for call in called:

 if call in call_order:

 index = call_order.index(call)

 if index:

 assert index == previous + 1

 previous = index

Mock objects - using a mock library

 """External orchestration dependency classes"""

class MesosData(object):
 """Bespoke wrapper for Mesos read calls"""

 def count(self, image):
 instances =self.get_containers(image=image)
 return len(instances)

 def get_containers(self, image):
 query = self.image_query(image)
 return self.run_query(query)

Import mockaccino
Import MesosData

mock = mockaccino.create_mock(MesosData)

Record a series of expected actions on the mock

Image = ‘http://myrepo/ol7-python3’
Instances = [‘0421175093b3’,
 ‘be397761cc8d’]
mock.count(image).will_return(3).always()
mock.get_containers(image).will_return(instances)

mockaccino.replay (mock)

Now use the mock to test your code

sut = MySystemUnderTest(mesos=mock)
Check the sut if fooled by the mock
self.assert(sut.is_happy(), True)
Verify the sut adhered to the expectations contract
self.assert(mock.verify(), True)

Using mock objects for BDD testing eg 3. - using mesos for orchestrating docker
containers. Here we pick one of the many mock libs, mockaccino - we substitute a mock
for our external dependency, the Mesos server, via our bespoke client class ...

http://myrepo/ol7-python3

Questions

Talk is linked from the meetup site

https://www.meetup.com/python-dbbug/events/235401143/

Thanks,
Ed Crewe

http://edcrewe.com/

https://www.meetup.com/python-dbbug/events/235401143/

