Problem 4
STUCK METALLIC SPHERES
Reporter: Stanisław Rakowski Authors: Stanisław Rakowski, Kamil Dutkiewicz
Problem statement
2
Relevant parameters
Ball’s parameters
Nozzle parameters
Initial conditions
3
0.6 mm
0.2 g
60°
v
h
Relevant parameters
Variables
Fixed
4
[1] Jamming of Granular Flow in a Two-Dimensional Hopper, K. To et al, Phys. Rev. Lett. 86, 71�[2] Jamming in granular matter, A. Garcimartin et al, AIP Conference Proceedings 742, 279 (2004)
Experimental setup
5
0 g
scale
cup
0.58 mm
0.2 g
500 balls
As fast as possible
60°
Arch formation
6
Modeling the flow as a probabilistic process
7
Probability of arch formation model
8
Measuring probability distribution
9
Measuring probability distribution
10
How it depends on the diameter of the orifice
11
Calculating expected number of balls
12
Measuring time
13
Final solution to nº 2
14
Designing the optimal nozzle
15
Optimization problem:
Given a cylinder of diameter L and balls of radius r, find the shortest (in terms of h) nozzle, that has an orifice of diameter d and never or almost never gets stuck.
For simplicity, we limit our solutions to cylindrically symmetrical ones.
L = 10 cm
d
h
Sequence of nozzles
16
Polishing our nozzle
17
After 16 iterations…
Simulation
LIGGGHTS – open source discrete element method particle simulation software
https://www.engineerdo.com/2019/10/04/liggghts/
18
Polishing our nozzle
Optimal nozzle comparison
19
100% stuck
5,5% stuck
Summary
20
Angle dependence
21
[1]Jamming of Granular Flow in a Two-Dimensional Hopper, K. To et al, Phys. Rev. Lett. 86, 71�[2]Jamming in granular matter, A. Garcimartin et al, AIP Conference Proceedings 742, 279 (2004)
Friction dependence
22
[1]Jamming of Granular Flow in a Two-Dimensional Hopper, K. To et al, Phys. Rev. Lett. 86, 71�[2]Jamming in granular matter, A. Garcimartin et al, AIP Conference Proceedings 742, 279 (2004)
Initial conditions dependence
23
Finding the optimal nozzle
24
2 diameters of the ball
desired d
Base experimental and simulated results
25
But
26
This is why flat nozzles require more balls to get stuck