
Device Tree
lifecycle discussion
May 2020 - Joakim Bech, François Ozog, Ilias
Apalodimas

History
Early Device Tree environments

- Originally created by Open Firmware.
- Few uses cases involving firmware (actually firmware may have been non existing at all).
- Linux owned all resources and all hardware.
- DT configurations mainly (only?) used by Linux kernel.
- DT was a pure hardware configuration.

Recent years environments
- DTB has been used by some vendors as kernel driver parameters DB which proved to be volatile and

introduced instability in Linux kernel (booting a new kernel with an old kernel DTB).
We reached some maturity 2, 3 years ago and we are at a point where pushing the DTB out of kernel entirely
can actually facilitate enforcing stability.

- (Android) Device Tree Overlays (DTO).
- Firmware installed secure world services (PSCI, OP-TEE etc) need to advertise themselves in the DTB.
- Need to pass other information between firmware, not only HW configuration (think the “chosen” node).
- Linux kernel isn’t owner of all hardware and resources any longer.
- Some devices and peripherals needs to be shared with firmware.

https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt

Who owns hardware ?
Firmware changing role: Trusted substrate is living next to the main OS

- Role was: prepare the system to load the OS.
- Role becomes: active trust services for applications or to limit hardware usage.

- Not UEFI runtime: Secure state with private memory and may be devices.
- S-EL2 a game changer for trust applications and services

- Automotive ISO24089
- Open Late Binding (in TrustZone @Arm, in Management Engine microcontroller@Intel)
- “Trustlets” like micropayments and DRM
- Regulatory policies enforcement (video-surveillance)
- Dedicated secure storage for insurance company non-repudiable logs

Device assignment for applications (DPDK) or VMs
- No issues for enum capable buses (PCI) but a problem for platform devices.
- Need a way for sysadmins (not fw/kernel developer) to assign a device.

- A single device is made of nodes, pinctrl, irqs, clocks, regulator with phandles …
- No metadata in DTB to identify what makes a “device” (actually, there is even no metadata to

identify handle “pointers”.

DT Lifecycle work items
Design goals

- Applicable to any firmware.
- U-Boot SPL, TF-A, Coreboot …
- OP-TEE, Trusty …
- U-Boot (EFI or non EFI), AVB? LinuxBoot?

- Applicable to any OS.
- Linux, BSD, Android.

- Leverage/enhance existing technologies.
- Android Device Tree Overlays (DTO).

Deliverables
- Specifications: DT, EBBR, AVB?, SMC calls?
- Upstream patches: U-Boot, OP-TEE, TF-A/M,

Linux, Zephyr.

Objectives
- Define clear authority boundary between

firmware and OS.
- Increase stability and security for OS (DT is not

a driver parameter DB).

- Define collaboration between firmware
components.

- Simplify DT to deal with HW diversity.
- Simplify DT for device assignment (DPDK or

Hypervisor).

https://source.android.com/devices/architecture/dto
https://en.wikipedia.org/wiki/Data_Plane_Development_Kit

Simplified boot chain in our current devices

An even more simplified dummy example to make it easier to discuss, here “A” could be secure side
firmware, “B” could be non-secure boot loader and “O” could be the OS.

Different types of problems
1. DTS-file “duplication”.
2. Missing firmware handover and runtime rules.
3. Trusting DTB.

Problem 1 - DTS duplication
- The same type of files are located in several different gits.
- In a boot chain A → B → O, developers for all of them needs to synchronize their

work.

Fictional example where things are not in sync:

(Yes, addresses are not aligned ... this is an oversimplified example just for the discussion)

Problem 1 - DTS duplication
The example on previous slide can lead to situations like:

- Developer for “A” wonder why UART is disabled when the system is up and running, he for sure enabled it in
his DTS file.

- Developer for “O” get sudden crashes/memory corruptions? Why? “A” is a runtime firmware and have mapped
another region in his setup.

- Developer “A” changed the reserved memory at some point, but didn’t change the reserve-memory in
“O”.

Why is it a problem?
- It’s a very fragile setup, things can easily break.
- You as a the one writing the DTS file never really have the true picture of how it’ll look like when the system is

up and running.
- Changes needs to be synchronized and preferably accepted/merged at the same time.
- Duplication of DTBs is not always complete across projects. Many boards cannot boot a Linux OS using the

U-Boot provided DTB

Problem 2 - handover and runtime rules
When passing a DTB from one firmware to another there are no hand-over rules.

- In a boot chain A → B → O, anyone can read, write, add, remove nodes, configurations etc.
- “O” might have written a DTS, so it expects that node "foo" is there, but "B" actually deleted it in runtime and

added a node "bar" instead.
- This also makes it hard to understand whether a DTB has been modified intentionally or by an attacker?

- foo@0x00….
+ bar@0xff...

Problem 3 - Trusting DTB
- Systems cannot be trusted if the the firmware hasn’t been signed and verified,

which is the reason we implement secure boot / chain of trust.

- The Device Tree signature support story is not coherent
- U-Boot have “Verified Boot”, that can verify any type of binary
- AOSP/Android has implemented AVB.

- Running a system with unverified DTB files is like opening up pandora's box to
hackers:

- Change addresses …
- Add nodes …
- Remove nodes …

- Side Channel Attacks
- For this discussion, please keep in mind that even a Chain of Trust verified firmware is susceptible to a

run-time SCA attack (glitching for example).

https://gitlab.denx.de/u-boot/u-boot/-/blob/master/doc/uImage.FIT/verified-boot.txt
https://source.android.com/devices/architecture/dto/implement#security

Problem 3 - Signed DTB
All DTB’s needs to be signed and verified, which leads to …

- You cannot do runtime modifications (add, remove, modify) to DTB’s since then the signature verification
would fail at the next boot stage.

- Implicitly that would mean that the “chosen” node cannot be used as today. It’ll also affect how you’re dealing
with Device Tree Overlay (*).

- foo@0x00….
+ bar@0xff...

Verify signature: OK Verify signature: FAILSVerify signature: FAILS

(*) With implicit trust it could work, but in the most secure case, then it will not work.

Problem 3 - Signed DTB
How can you design signature verification of DTBs? A few examples ...

Single DTB
- A single immutable DTB is provided to the first stage boot loader (on secure side)
- Each and every boot stage verify the DTB.

Multi DTB (plagued with “problem 1” and “problem 2” on previous slides)
- Many different immutable DTBs are provided/used in each stage of the boot.
- Key management becomes a challenge, you need to multiple priv/pub keys.
- If you need runtime modification, then you basically need to sign the DTB again before handing it over. Private

key management becomes a nightmare.

Bake a DTB into a firmware-blob (which is verified)
- Still needs to be immutable, i.e., runtime modifications after verification cannot happen (the DTB is in this case

is implicitly verified).

Problem 3 - Signed DTB
Conclusions

- You should sign and verify DTB’s just as any other firmware, otherwise you’re
running an untrusted system!

- The DTB has to be immutable.
- This affects discussions we’ve had around passing (TPM) “measurements” between firmware using

Device Tree.
- Things like the “chosen” node, cannot be used as of today (*).
- DTO must be considered.

- Splitting up the DTB into “same same but different” DTBs make
signature/verification story complicated.

- I.e., “Problem 1” in this deck is actually also an issue when it comes to running signed
DTB’s.

- Run-time attacks when the system if fully up and running is hard to mitigate.
(*) With implicit trust it could work, but in the most secure case, then it will not work.

Call to action

Questions we should ask ourselves
- Do we actually need to do runtime modifications to the DTB blob?
- Do we need to look at DTBs from another angle? One part covering hardware

configs and one covering software configs?
- Do we need to sign everything?

- Are the other ways to achieve the same? Measured boot?
- Why can’t we have a single DTB given to the first stage boot loader and then this

is propagated all the way through the boot chain?
- Memory constraints?
- Hot-plugging?
- Device Tree Overlay came by because a single representation was problematic.

- Wouldn’t a generic “DT git” help quite a lot to overcome the challenges presented
in this deck?

- How would we have designed something like Device Tree if we had never done
Device Tree and had no knowledge about it? Starting point would probably be the
first boot loader and not Linux kernel.

https://lkml.org/lkml/2012/11/5/615

Thank you

Backup slides

DTB lifecycle constraints
- Reference DTB for the platform need to be updatable.

- Probably on a file system (SSD, NvME…).
- Can embed it in FIP but very impractical to change for operational situations.

- DTB cannot be loaded too early 256KB of SRAM, 30KB DTB …
- No common DT repo, need to start for kernel.org produced DTBs.

- Signature
○ No standard for DTB signature.

- Versioning
- Probably need to include kernel version (actually the version translated into an “uint”) in the DTB and the

produced fragment so that everyone can take appropriate action.
- Using kernel version sounds bad but I think that’s the project that have the biggest legacy.
- Over time, central repo version (uint = ORIGIN + function(central repo version)) should replace kernel’s

one. ORIGIN is the kernel version number we chose to do the switch.

Backup#1 - Traditional chain of Boot

Backup#1 - Traditional chain of Boot
- DTB isn’t considered, quite unlikely scenario on many embedded devices today

Backup#2 - CoT without DTB verification

1. Run-time
modifications
possible.

2. Attack on DTB
WILL go
undetected

Backup#2 - CoT without DTB verification
- DTB is loaded late in the boot
- This is typical setup when no sort of DTB signature verification is enabled
- DTB run-time modifications are possible

Attacks?
- Tamper the DTB binary
- Run-time modifications (during boot and when the system is fully up and running)

Backup#3 - CoT with late DTB verification

1. Run-time
modifications
possible.

2. Attack on DTB
might go
undetected

Backup#3 - CoT with late DTB verification
- Basically the same as a typical setup, but with some sort of DTB signature

verification is enabled.
- Late verification

Attacks?
- Run-time modifications (during boot and when the system is fully up and running)

Backup#4 - CoT with multiple DTBs

1. Run-time
modifications
possible.

2. Attack on DTB
might go
undetected

3. Multi-key handling

Implicit trust of DTB1
due to Chain of Trust

Implicit trust of DTB2
due to Chain of Trust

Backup#4 - CoT with multiple DTBs
- Also somewhat common if we set a side verification

- Different boot stages loads “their own” DTB, might or might not pass it on
- Dual verification means that different stages will need to have different public

keys (if they weren’t signed with the same private key of course)
- DTB run-time modifications are possible (to some extent)

Attacks?
- Run-time modifications (during boot and when the system is fully up and running)

Backup#5 - Trad. CoT with DTB loaded once

1. Run-time
modifications
possible.

2. Attack on DTB
might go
undetected in later
boot stages

Implicit trusted DTB
due to Chain of Trust

Backup#5 - Trad. CoT with DTB loaded once
- First thing running on the device loads and verifies the DTB
- Implicit trust of DTB based on normal Chain of Trust
- DTB run-time modifications are possible

Attacks?
- Run-time modifications (during boot and when the system is fully up and running)

- Exploit in run-time firmware can tamper with DTB being passed on
- Example: Boot exploit in OP-TEE (TEE core), the payload modify the DTB in memory
- Again, remember Side Channel Attacks!

Backup#6 - CoT with individual DT verification

1. Boot-time
modifications NOT
possible.

2. Attack on DTB IS
detected

3. Public key needed
in all stages

Backup#6 - CoT with individual DT verification
- DTB verifications doesn’t rely only on Chain of Trust or a “one time DTB

verification”
- Each stage in the boot verifies the DTB on their own.
- Each stage needs access to the public key in one or another way
- Impossible to modify DTB’s (even intentionally)

Attacks?
- Run-time modifications (when the system fully up and running)

RAM

board.dtb vmlinuz initrd

u-boot.org

firmware.bin

Injects
nodes

Just loadboots

Current situation, Linux kernel vision

Kernel.org

*.dtb

vmlinuz
initrd

Vendor

Kernel.org

*.dtb

vmlinuz
initrd

RAM

board.dtb vmlinuz initrd

firmware.bin

Injects
nodes

Just loadboots

Current situation, firmware vision

BL32.bin op-tee.org
 (incl. optee.dtb)

 BL33.bin u-boot.org
 (incl. u-boot.dtb)

BL31.bin tfa.org

Vendor

Kernel.org

*.dtb

vmlinuz
initrd

RAM

board.dtb vmlinuz initrd

firmware.bin

Injects
nodes

Just loadboots

DT Lifecycle

BL32.bin op-tee.org
 (incl. optee.dtb)

 BL33.bin u-boot.org
 (incl. u-boot.dtb)

BL31.bin tfa.org
board.dtb

Kernel *.dtb constraints:
- No “firmware” nodes (PSCI)
- No chosen

Board.dtb (signed by kernel)
- Loaded by BL33
- Issue new SPCI call to signal

intention to boot a payload with
board.dtb

- TF-A, OP-TEE, OP-TEE “reply” by
sending signed DTB fragments
(PSCI+RAM) (OP-TEE service)
that may also enable or disable
nodes

- Linux receives the board.dtb
along with all signed
fragments/overlays and decide
what to do.

- Mechanism valid regardless of
code base (TF-A + OP-TEE +
OP-TEE, U-Boot, SPL + OP-TEE
+ U-Boot; TFA + Trusty + ...)

