�
Swayam Prabha
Course Title
Multivariate Data Mining- Methods and Applications
Lecture 34
Training and Pruning Decision Trees
By
Anoop Chaturvedi
Department of Statistics, University of Allahabad
Prayagraj (India)
Slides can be downloaded from https://sites.google.com/view/anoopchaturvedi/swayam-prabha
Data Mining_Anoop Chaturvedi
2
Data Mining_Anoop Chaturvedi
3
Data Mining_Anoop Chaturvedi
4
Pruning the Tree ⇒ Control overfitting
Remove leaves and assign the majority label of the parent to all items.
Pre-pruning ⇒ Stop growing the tree at some point there is insufficient data to make reliable decisions.
Post-pruning ⇒ Grow the full decision tree and remove nodes for which we have insufficient evidence.
Data Mining_Anoop Chaturvedi
5
Data Mining_Anoop Chaturvedi
6
Data Mining_Anoop Chaturvedi
7
Data Mining_Anoop Chaturvedi
8
|
Data Mining_Anoop Chaturvedi
9
Data Mining_Anoop Chaturvedi
10
Data Mining_Anoop Chaturvedi
11
Data Mining_Anoop Chaturvedi
12
Data Mining_Anoop Chaturvedi
13
Data Mining_Anoop Chaturvedi
14
Data Mining_Anoop Chaturvedi
15
Data Mining_Anoop Chaturvedi
16
Data Mining_Anoop Chaturvedi
17
Data Mining_Anoop Chaturvedi
18
Data Mining_Anoop Chaturvedi
19
Data Mining_Anoop Chaturvedi
20
Data Mining_Anoop Chaturvedi
21
Data Mining_Anoop Chaturvedi
22
Data Mining_Anoop Chaturvedi
23
Data Mining_Anoop Chaturvedi
24
Data Mining_Anoop Chaturvedi
25