BENG 247A
Supreresolution and multiplexed imaging Bogdan Bintu
Molecules within a human cell
Dense organization within a cell
3x109 bases
~150,000
regulatory regions
30,000 genes
Need of 10,000-100,000 colors
Need of nm scale resolution
Fourier optics
Point
source
2-slit screen
camera
Photons
(rays)
Basic Microscope
Camera plane
Sample plane
Objective
Optical axis
Tube lens
Camera
The Abbe Diffraction Limit
The Abbe diffraction limit found in 1873 by Ernst Abbe.
Fluorescence microscopy
Image within a cell
~30,000 types of proteins
Fluorescence microscopy
Image within a cell
Super-resolution fluorescence microscopy
Periodic structure of the axonal skeleton
Xiaowei Zhuang
PALM
STORM
Super-resolution fluorescence microscopy
Bleach the sample (Dark state) +Glucose oxidase +BME
Fluorescence imaging
Molecular positions
Cy5
Energy Levels
Ψ0
E0
Ψ1
E1
Ψ2
E2
ground state
Super-resolution fluorescence microscopy
Epifluorescence imaging of DNA
Nucleus
Cy5 and Alexa405
Bleach the sample (Dark state) +Glucose oxidase +BME
Super-resolution fluorescence microscopy
Super-resolution fluorescence microscopy
Super-resolution fluorescence microscopy
Super-resolution fluorescence microscopy
Active Inactive Repressed
Nature, 2016, Super-resolution imaging reveals distinct chromatin folding for different epigenetic states
Alistair N. Boettiger, Bogdan Bintu, Jeffrey R. Moffitt, Siyuan Wang, Brian J. Beliveau, Geoffrey Fudenberg, Maxim Imakaev, Leonid A. Mirny, Chao-ting Wu & Xiaowei Zhuang
Super-resolution fluorescence microscopy
Cell, 2015, Mapping Synaptic Input Fields of Neurons with Super-Resolution Imaging
Yaron M. Sigal, Colenso M. Speer,Hazen P. Babcock and Xiaowei Zhuang
Super-resolution fluorescence microscopy - live imaging
Elife, 2014, Developmental mechanism of the periodic membrane skeleton in axons
Guisheng Zhong, Jiang He, Ruobo Zhou, Damaris Lorenzo, Hazen P Babcock, Vann Bennett, Xiaowei Zhuang
Next generation sequencing
4100>1060 > Number of atoms in the Sun
3x109 bases
~150,000
regulatory regions
30,000 genes
Need of 10,000-100,000 colors
Microfluidics
Microscope lasers
Spatial transcriptomics (Method of the year in 2020 - Nature methods)
sample
5 fluorescent colors > 1,000-10,000 effective colors
Multiplex Error Robust In Situ Hybridization (MERFISH)
Chen et al Science 2015
X. Zhuang, Nature Methods, 2021
Advances in DNA synthesis (labelling thousands of molecular types)
Combinatorial encoding and decoding scheme
+
+
=
Next generation sequencing
Microfluidics
Microscope
Spatial transcriptomics/genomics
MERFISH (Zhuang lab)
seqFISH (Cai lab)
Spatial transcriptomics (Frisén lab)
SlideSeq (Chen&Makasco labs)
FISSEQ (Church lab)
STAR-map (Deisseroth lab)
(~500 colors)
Ståhl et al. Science 2016
Rodriques et al Science 2019
Chen et al Science 2015
Lubeck et al., 2014
Wang et al Science 2019
Lee et al Science 2014
Next gen. sequencing
Chen et al Science 2015 X. Zhuang, Nature Methods, 2021
RNA/DNA labelling
ssDNA/RNA
RNA
T
T
C
G
A
A
G
C
>15 bases - stable in PBS
In Situ Hybridization ( ISH)
Fluorescence F
RNA/DNA labelling
Rob Singer
…
single-molecule FISH
20bases
>30 probes
DNA synthesis
https://www.youtube.com/watch?v=KUm173PZJBQ
voltage/micromirrors redirecting photons
Change in Ph - incorporation of a nucleotide
RNA/DNA labelling
…
single-molecule FISH
Multiplexed RNA/DNA labelling
…
single-molecule FISH
Readout sequences
Readout probe 1
2
1
mRNA1
Multiplexed RNA/DNA labelling
…
single-molecule FISH
Readout sequences
Readout probe 2
…
2
1
mRNA1
mRNA2
Encoding probes
Readout 3
...
Multiplexed RNA imaging - sequential labelling
N readouts
N species of RNA
Readout
sequence
Targeting
sequence
Readout 1
Readout 2
Readout 2
Readout 3
...
Readout 1
1
1
1
0
10
10
11
01
101...
101...
110...
011...
N = 16
>60,000
RNA species
RNA 1: 1 0 1 0 0 0 ... 0
RNA 2: 0 1 1 0 0 0 ... 0
RNA m: 1 1 1 1 1 1 ... 1
…
Readout: 1 2 3 4 5 6 ... N
N readouts ~ 2N species of RNA
Multiplexed RNA imaging - combinatorial labelling
RNA 100: 1 0 1 1 1 0 0 0 0 0 0
RNA 200: 1 0 0 1 1 0 0 0 0 0 0
N = 16
>50%
RNA is called incorrectly
Readout 2
Readout 3
...
Readout 1
1
1
1
0
10
10
11
01
101...
101...
110...
011...
RNA 1: 1 0 1 0 0 0 ... 0
RNA 2: 0 1 1 0 0 0 ... 0
RNA m: 1 1 1 1 1 1 ... 1
…
Readout: 1 2 3 4 5 6 ... N
Multiplexed RNA imaging - combinatorial labelling
Readout 2
Readout 3
...
Readout 1
1
1
1
0
10
10
11
01
101...
101...
110...
011...
RNA 1: 1 0 1 0 0 0 ... 0
RNA 2: 0 1 1 0 0 0 ... 0
RNA m: 1 1 1 1 1 1 ... 1
…
Readout: 1 2 3 4 5 6 ... N
RNA 100: 1 0 1 1 1 0 0 0 0 0 0
RNA 200: 1 0 1 0 0 0 0 1 1 0 0
1 0 0 1 1 0 0 0 0 0 0
MERFISH:
Multiplexed, error-robust Fluorescence in situ Hybridization
Chen et al, Science (2015)
Multiplexed RNA imaging - combinatorial labelling
Multiplexed RNA/DNA labelling
Chen et al, Science (2015)
MERFISH images across readouts
~120 genes were targeted in 16 bits
MERFISH - Bintu lab applications
Imaging chromatin regulation at the genome scale
Su,...,Bintu*,Zhuang* Cell 2020
Inducing neurogenesis
Collaboration with Don Cleveland
The regulation of transcription factors across development
Collaboration with Chris Glass
Olfactory epithelium(nose)
Olfactory bulb (brain)
Receptor
RNA
Epithelium
Glomeruli
The connectome of the olfactory system
Bintu et al 2023 (in preparation)
dying
convert
Inducing neurogenesis
In the adult centers, the neural paths are something fixed and immutable:
everything may die, nothing may be regenerated
Ramon y Cajal, 1928
*Exception: Adult neurogenesis
Gage lab, Doetsch lab, Linnarsson lab and more
Approaches to glia-to-neuron transdifferentiation
A therapeutically viable approach
What cell types convert into neurons?
Which types of neuron can be obtained and in what brain regions?
Can we capture intermediate states?
Maimon et al, Nat Neurosci, 2021
+Tamoxifen
Glia promoter
Genetically label glial cells
New neurons after 2 months
+PTB-ASO
PTB mRNA
Glial cells
Improved memory
BIT 1
BIT 2
...
Thalamus
Dentate
gyrus
MERFISH in the brain
BIT 22
Dentate
gyrus
Thalamus
BIT 1
BIT 2
...
BIT 22
BIT 1
BIT 2
BIT 3
BIT 6
BIT 9
BIT 20
...
...
...
...
...
BSN (Bassoon Presynaptic Cytomatrix Protein)
1
0
0
1
1
1
MERFISH in the brain
Astrocytes
Cortical excitatory neurons
Cortical inhibitory neurons
CA2
CA1
Oligodendrocytes
DG
Pericytes
CA3
Endothelial
Thalamic neurons
MERFISH (230 genes)
Single-cell UMAP (~57,000 cells)
Ependymal cells
Immature SVZ neurons
Mature Dentate gyrus neurons
Astrocytes
Immature dentate gyrus neurons
Zhao, Deng, Gage, Cell, 2008
SGZ
Control (CBM4)
SOX11
Number of transcripts per cell
0
>20
Zhao, Deng, Gage, Cell, 2008
SGZ
Control (CBM4)
IGFBPL1
(Growth factor modulator)
Number of transcripts per cell
0
>20
Zhao, Deng, Gage, Cell, 2008
SGZ
Mki67
(cell-cycle –G2/M)
Number of transcripts per cell
0
Zhao, Deng, Gage, Cell, 2008
SGZ
Progenitors
Immature neurons
Dentate gyrus neurons
Astrocytes
8 week mouse
Immature neurons
1 year mouse
Neurogenesis stops in old mice
Progenitors
Immature neurons
Dentate gyrus neurons
Astrocytes
8 week mouse
Immature
neurons
1 year mouse + PTBP-ASO (2weeks)
Inducing neurogenesis in old mice via PTB-ASO
3 days post PTBP1-ASO injection
1 week post PTBP1-ASO injection
1 Month post PTBP1-ASO injection
Dentate gyrus
Subventricular zone
Igfbpl1 – Insulin like growth factor binding protein 1
Dentate gyrus
Subventricular zone
Dentate gyrus
Subventricular zone
Timepoints for after PTB-ASO delivery
Progenitors
Immature neurons
Dentate gyrus neurons
Astrocytes
8 week mouse
Immature
neurons
1 year mouse + PTBP-ASO (2weeks)
Inducing neurogenesis in old mice via PTB-ASO
Immature neurons
1 year mouse
Conclusions
Stage 1
Stage 2
Stage 3
Stage 1
Stage 2
Stage 3
1 year old mice
Saline injection
PTBP1-ASOs
Next direction
Direct astrocyte glia-to-neuron conversion
Funding sources and collaborators
Don Cleveland
Roy Maimon
Carlos Marinas
Quan Zhu
Subventricular zone
Where PTBP1 is most highly expressed in the mouse brain?
Number of transcripts per cell
0
Where PTBP1 is most highly expressed in the mouse brain?
Number of transcripts per cell
0
Astrocytes
Choroid
Plexus
Ependymal
Ventricular
Ependymal
Oligos
Cortical
Neurons
Striatal
Neurons
8 weeks old mouse
Immature
Neurons
Dentate
Gyrus
0
11>
20>
Astrocytes
Choroid
Plexus
Ependymal
Ventricular
Ependymal
Oligos
Cortical
Neurons
Striatal
Neurons
Astrocytes
Choroid
Plexus
Ependymal
Ventricular
Ependymal
Oligos
Cortical
Neurons
Striatal
Neurons
1 year old mouse 2 weeks post PTBP1-ASO
1 year old mouse control saline
Dentate
Gyrus
Dentate
Gyrus
Immature
Neurons
Immature
Neurons
0
11>
Highest level of suppression in the Ependymal cells
Using Aldhl1:Sun1GFP mouse model marks Astrocytes and Ependymal cells
Sun1 – nuclear envelope protein
DAPI
Dentate gyrus
Sun1GFP
DAPI
Sun1GFP
Choroid Plexus
Choroid plexus
Composed of Ependymal cells