
Hierarchical Core Decomposition in
Parallel:
From Construction to Subgraph Search
 Deming Chu, Fan Zhang, Wenjie Zhang, Xuemin Lin, Ying Zhang

1

Core Decomposition

● Powerful Tool in Network Analysis
● Decompose a graph into layers

2

Limitations of Core Decomposition

1. Connectivity of k-cores is lost
2. Containment of k-cores is lost

3

1.

2.

1. Hierarchical Core Decomposition
(HCD)

4

Applications of HCD

5

2. Subgraph Search on HCD

● Find high-quality subgraphs on HCD
● Community scoring metric to evaluate subgraph quality

● E.g. average degree, clustering coefficient

Work-Efficient
Parallel Algorithms

Score=0.8 Score=0.6

6

Work-Efficient: #steps matches
the best serial time complexity

Score=0.5 Score=0.4

Applications of Subgraph Search on HCD

7

[1] D. Chu, F. Zhang, X. Lin, W. Zhang, Y. Zhang, Y. Xia, and C. Zhang, “Finding the best k in core decomposition: A time and space
optimal solution,” in ICDE. IEEE, 2020, pp. 685–696.

Roadmap
✔ Problem Definition

● HCD Construction
● Subgraph Search on HCD

● Parallel Construction of HCD
● Parallel Subgraph Search on HCD
● Experimental Results
● Conclusion

8

K-Core and Core Decomposition

⬤ Nodes with coreness 3
⬤ Nodes with coreness 2
⬤ Nodes with coreness 1

9

1. Hierarchical Core Decomposition

10

Definition: Community Scoring Metric
Primary Value (for a subgraph 𝑺)
Most metrics are based on Primary Values

 𝒏(𝑺): # of nodes
 𝒎(𝑺): # of edges
 𝒃(𝑺): # of boundary edges
 𝜟(𝑺): # of triangles
 𝒕(𝑺): # of triplets

Community Scoring Metric (for a subgraph 𝑺)
To measure community quality

11

Type-A

Type-B

Higher-Order

2. Subgraph Search on HCD

12

Roadmap
● Problem Definition
✔ Parallel Construction of HCD
● Parallel Subgraph Search on HCD
● Experimental Results
● Conclusion

13

Existing Works of HCD Construction

14

[1] D. W. Matula and L. L. Beck, “Smallest-last ordering and clustering and graph coloring algorithms,” J. ACM, vol. 30, no.
3, pp. 417–427, 1983.

Intuition of Our Solution

● Add vertices to union-find in decreasing coreness
● Meanwhile, build HCD from bottom to up
● Use pivot to identify tree node and its parent

15

Vertex Rank and Pivot

● Vertex Rank: sort nodes by coreness, and break tie by id
● Pivot: the vertex with the lowest vertex rank in a subgraph

16

pivot
⬤ Nodes with coreness 3
⬤ Nodes with coreness 2
⬤ Nodes with coreness 1

Vertex Rank and Pivot

1. Group Vertices 2. Find Parent

17

pivot
old pivot

pivot

Our Solution

18

Our Solution

19

pivot
old pivot

add ● to the graph

Our Solution

20

pivot
old pivot

Our Solution

21

2. Union ● with neighbors in
union-find and pivot is changed

pivot
old pivot

Our Solution

22

3. Group ● by pivot into tree node

pivot
old pivot

Our Solution

23

4. In the same CC, the tree node
containing ● and ● have parent-child
relation

pivot
old pivot

Union-find with Pivot

24

Parallel Vertex Rank Computation

25

2. Group vertices
by coreness

 1. Distribute vertices

is parallel

…………

…………

3. Place back into array,
obtain vertex rank

PHCD Analysis

26

Roadmap
● Problem Definition
● Parallel Construction of HCD
✔ Parallel Subgraph Search on HCD
● Experimental Results
● Conclusion

27

Existing Works of Subgraph Search
Limitations of BKS [1] (time- and space-optimal serial solution)

● Compute in decreasing coreness, rely on the results of larger coreness
● Preprocessing in BKS is inefficient to parallelize

 Our Solution
● Vertex-centric solution (no dependency)
● A novel preprocessing
● Efficient to parallelize

28

[1] D. Chu, F. Zhang, X. Lin, W. Zhang, Y. Zhang, Y. Xia, and C. Zhang, “Finding the best k in core decomposition: A time and space
optimal solution,” in ICDE. IEEE, 2020, pp. 685–696.

Our Solution

1. Compute HCD
2. Preprocessing
3. Score Computation on HCD
4. Output the Best K-Core

29

Our Solution

1. Compute HCD
2. Preprocessing
3. Score Computation on HCD
4. Output the Best K-Core

30

3. Score Computation on HCD (Intuition)

3. Type-A Score Computation on HCD

 E.g. Average Degree, #vertices, #edges

5v, 8e 4v, 6e

9v, 14e

9v, 9e

5v, 8e 4v, 6e

18v, 28e

27v, 37e

i. Vertex-centric
contribution

…………

ii. Tree node
contribution

Aggregate

iii. Primary
value of k-cores

Bottom-Up
Summation

Compute

is parallel
3.2 3

3.11

2.74

iv. Score of k-cores

Score

32

3. Type-B Score Computation on HCD

● Similar but more complex compared with type-A
● Triangle: use lower-degree endpoint to check triangle existence
● Triplet: count triplets based on the coreness of neighbors

33

Our Solution

1. Compute HCD
2. Preprocessing
3. Score Computation on HCD
4. Output the Best K-Core

34

The highest score

PBKS Time Analysis

35

Roadmap
● Problem Definition
● Parallel Construction of HCD
● Parallel Subgraph Search on HCD
✔ Experimental Results

● Experimental Setting
● Runtime Performance
● Application Performance

● Conclusion

36

Dataset Statistics & Experimental Setting

• 10 Public Networks, Up to 100M nodes & 4B edges
• A Quad-Core (up to 40 threads) Linux server with 128G memory

37

Parallel HCD Construction Time
● Serial PHCD is 1.24-2.33x faster

than LCPS
● 40-cores

● Small graphs: 10x
● Large graphs: 15-20x

Significantly faster than LCPS

38

Increasing network size

Parallel HCD Construction Time

● LB: the lower-bound cost of the
UF-based method

● LB is ~0.5 the cost of our method
Our PHCD is close to lower bound

39

Parallel HCD Construction Time

● LB: the lower-bound cost of the
UF-based method

● LB is ~0.5 the cost of our method
Our PHCD is close to lower bound

● RC is required in Divide and
Conquer method

D&C paradigm is inefficient in
building HCD

40

Parallel Subgraph Search Time

 Score Computation (40-cores)
● Type-A: Small 30-45x

 Large 50x
● Type-B: ~20x
Significantly faster than BKS

41

Increasing network size

Application: Densest Subgraph

42

[1] Fang, Yixiang, et al. Efficient algorithms for densest subgraph discovery. PVLDB 2019.
[2] D. Chu, F. Zhang, X. Lin, W. Zhang, Y. Zhang, Y. Xia, and C. Zhang, “Finding the best k in core decomposition: A time and
space optimal solution,” in ICDE. IEEE, 2020, pp. 685–696.

Better is
bold

Application: Maximum Clique

43

Roadmap
● Problem Definition
● Parallel Construction of HCD
● Parallel Subgraph Search on HCD
● Experimental Results
✔ Conclusion

44

Conclusion

45

Q & A

46

