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Core Decomposition

● Powerful Tool in Network Analysis
● Decompose a graph into layers

2



Limitations of Core Decomposition

1. Connectivity of k-cores is lost
2. Containment of k-cores is lost
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1. Hierarchical Core Decomposition 
(HCD)
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Applications of HCD
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2. Subgraph Search on HCD

● Find high-quality subgraphs on HCD
● Community scoring metric to evaluate subgraph quality

● E.g. average degree, clustering coefficient

Work-Efficient
Parallel Algorithms

Score=0.8 Score=0.6
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Work-Efficient: #steps matches 
the best serial time complexity

Score=0.5 Score=0.4



Applications of Subgraph Search on HCD
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Roadmap
✔ Problem Definition

● HCD Construction
● Subgraph Search on HCD

● Parallel Construction of HCD
● Parallel Subgraph Search on HCD
● Experimental Results
● Conclusion
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K-Core and Core Decomposition

  

⬤ Nodes with coreness 3
⬤ Nodes with coreness 2
⬤ Nodes with coreness 1
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1. Hierarchical Core Decomposition
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Definition: Community Scoring Metric
Primary Value (for a subgraph 𝑺)
Most metrics are based on Primary Values

 𝒏(𝑺): # of nodes
 𝒎(𝑺): # of edges
 𝒃(𝑺): # of boundary edges
 𝜟(𝑺): # of triangles
 𝒕(𝑺): # of triplets

Community Scoring Metric (for a subgraph 𝑺)
To measure community quality
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Type-A

Type-B

Higher-Order



2. Subgraph Search on HCD
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Roadmap
● Problem Definition
✔ Parallel Construction of HCD
● Parallel Subgraph Search on HCD
● Experimental Results
● Conclusion

13



Existing Works of HCD Construction
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Intuition of Our Solution

● Add vertices to union-find in decreasing coreness
● Meanwhile, build HCD from bottom to up
● Use pivot to identify tree node and its parent
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Vertex Rank and Pivot

● Vertex Rank: sort nodes by coreness, and break tie by id
● Pivot: the vertex with the lowest vertex rank in a subgraph
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pivot
⬤ Nodes with coreness 3
⬤ Nodes with coreness 2
⬤ Nodes with coreness 1



Vertex Rank and Pivot

1. Group Vertices 2. Find Parent
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pivot
old pivot

pivot



Our Solution
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Our Solution
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pivot
old pivot

add ● to the graph



Our Solution
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pivot
old pivot

 



Our Solution
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2. Union ● with neighbors in 
union-find and pivot is changed

pivot
old pivot

 



Our Solution
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3. Group ● by pivot into tree node

pivot
old pivot

 



Our Solution
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4. In the same CC, the tree node 
containing ● and ● have parent-child 
relation

pivot
old pivot

 



Union-find with Pivot

  

24

 



Parallel Vertex Rank Computation
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2. Group vertices 
by coreness

  1. Distribute vertices 

is parallel

…………

 

 

…………

3. Place back into array, 
obtain vertex rank



PHCD Analysis
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Roadmap
● Problem Definition
● Parallel Construction of HCD
✔ Parallel Subgraph Search on HCD
● Experimental Results
● Conclusion
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Existing Works of Subgraph Search
Limitations of BKS [1] (time- and space-optimal serial solution)

● Compute in decreasing coreness, rely on the results of larger coreness
● Preprocessing in BKS is inefficient to parallelize

 Our Solution
● Vertex-centric solution (no dependency)
● A novel preprocessing
● Efficient to parallelize
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Our Solution

1. Compute HCD
2. Preprocessing
3. Score Computation on HCD
4. Output the Best K-Core
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Our Solution

1. Compute HCD
2. Preprocessing
3. Score Computation on HCD
4. Output the Best K-Core
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3. Score Computation on HCD (Intuition)

 
 



3. Type-A Score Computation on HCD

 E.g. Average Degree, #vertices, #edges

5v, 8e 4v, 6e

9v, 14e

9v, 9e

5v, 8e 4v, 6e

18v, 28e

27v, 37e 

 

 

i. Vertex-centric
contribution

…………

ii. Tree node 
contribution

Aggregate

iii. Primary 
value of k-cores

Bottom-Up
Summation

Compute

is parallel
3.2 3

3.11

2.74

iv. Score of k-cores

Score
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3. Type-B Score Computation on HCD

● Similar but more complex compared with type-A
● Triangle: use lower-degree endpoint to check triangle existence
● Triplet: count triplets based on the coreness of neighbors
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Our Solution

1. Compute HCD
2. Preprocessing
3. Score Computation on HCD
4. Output the Best K-Core
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The highest score



PBKS Time Analysis
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Roadmap
● Problem Definition
● Parallel Construction of HCD
● Parallel Subgraph Search on HCD
✔ Experimental Results

● Experimental Setting
● Runtime Performance
● Application Performance

● Conclusion
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Dataset Statistics & Experimental Setting

• 10 Public Networks, Up to 100M nodes & 4B edges
• A Quad-Core (up to 40 threads) Linux server with 128G memory 
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Parallel HCD Construction Time
● Serial PHCD is 1.24-2.33x faster 

than LCPS
● 40-cores

● Small graphs: 10x
● Large graphs: 15-20x

Significantly faster than LCPS
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Increasing network size



Parallel HCD Construction Time

● LB: the lower-bound cost of the 
UF-based method

● LB is ~0.5 the cost of our method
Our  PHCD is close to lower bound
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Parallel HCD Construction Time

● LB: the lower-bound cost of the 
UF-based method

● LB is ~0.5 the cost of our method
Our  PHCD is close to lower bound

● RC is required in Divide and 
Conquer method

D&C paradigm is inefficient in 
building HCD
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Parallel Subgraph Search Time

 Score Computation (40-cores)
● Type-A: Small 30-45x

         Large 50x
● Type-B: ~20x
Significantly faster than BKS
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Increasing network size



Application: Densest Subgraph
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Application: Maximum Clique 
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Roadmap
● Problem Definition
● Parallel Construction of HCD
● Parallel Subgraph Search on HCD
● Experimental Results
✔ Conclusion
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Conclusion
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Q & A
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