|

Hierarchical Core Decomposition in
Parallel:
From Construction to Subgraph Search

Deming Chu, Fan Zhang, Wenjie Zhang, Xuemin Lin, Ying Zhang

SSSSSS

Core Decomposition

e Powerful Tool in Network Analysis
e Decompose a graph into layers

Limitations of Core Decomposition

1. Connectivity of k-cores is lost 1. i
2.

Containment of k-cores is lost
3-core G 3-core G,

®e %% s 3-core G, 2-core G.

1. Hierarchical Core Decomposition
(HCD)

® Connectivity and Containment of g h
Different k-cores _

® Stored in 0(n) space, n: #vertices \ J

P-Complete proof (inherently sequential) { J

Near-linear work parallel algorithm

VVVVVV

Applications of HCD

® Cohesive Subgraph Search
® Find influential k-core, attributed k-core, the densest subgraph

® User Engagement Analysis
® Gives more accurate prediction than core decomposition

® Graph Visualization
® Visualize the internet, biology, and brain networks

2. Subgraph Search on HCD

e Find high-quality subgraphs on HCD

e Community scoring metric to evaluate subgraph quality
e FE.g. average degree, clustering coefficient

Work-Efficient \ y
Parallel Algorithms

) e ScOre=0.5 Score=0.4

Work-Efficient: #steps matches | j
the best serial time complexity \ % :

@] [‘Q Score=0.8 Score=0.6

VVVVVV

Applications of Subgraph Search on HCD

® Densest Subgraph
» Our solution is the STOA approximate solution for densest subgraph

® Maximum Clique
» Our solution can be a potential pruning strategy for maximum clique

® Size-Constrained k-Core [1]

[1] D. Chu, F. Zhang, X. Lin, W. Zhang, Y. Zhang, Y. Xia, and C. Zhang, “Finding the best k in core decomposition: A time and space
optimal solution,” in ICDE. IEEE, 2020, pp. 685-696.

Roadmap

v Problem Definition

e HCD Construction
e Subgraph Search on HCD

Parallel Construction of HCD
Parallel Subgraph Search on HCD
Experimental Results

Conclusion

VVVVVV

K-Core and Core Decomposition

» k-Core: the maximal connected subgraph
where each node has at least k neighbors

» Coreness: largest k such that the node is in the k-core

@ @ .0. @ Nodes with coreness 3
— ¢ YT} Nodes with coreness 2

0904g Nodes with coreness 1

VVVVVV

1. Hierarchical Core Decomposition

® k-Core Tree Node: T; stores the
vertices with coreness k in a k-core S; ‘@ <> 5 S

® Parent Tree Node: k,-core treenode T; 2-core S, 1-core S,
is the parent of k,-core tree node T, if
1. k1 < kz { J
2. Sz C Sl
3. Nok'-coreS', S, c S c§; é 2-core tree
‘& Y noder,

® HCD: find all k-core tree nodes and
their parent tree node

VVVVVV

|

Definition: Community Scoring Metric

Primary Value (for a subgraph S)

Most metrics are based on Primary Values

“n(S): # of nodes ©
m(S): # of edges &°
b(S): # of boundary edges 5 o’;

B 7
N

A(S): # of triangles A

| #(S): # of triplets <:
Higher-Order

Type-A -

' Average Degree:

Type-B { Clustering Coefficient:

| Conductance: 1 —

Community Scoring Metric (for a subgraph S)
To measure community quality

2xm(S)
n(s)
2xm(S)
n($)xn(s)-1)

. b
CutRatio: 1 — - ST

. vk (mP) (2xm(P)+b(Py) ?
Modularity:).*_, (—m (2xm))
b(S)

2Xm(S)+b(S)
3XA(S)
t(S)

Internal Density:

2. Subgraph Search on HCD

Given: Graph G, Community Scoring Metric Q

Subgraph Search: find the k-core with the highest score w.r.t. Q
among all k-cores

3-core G341 3-core Gz; 2-core G, I-core G4

Roadmap

Problem Definition

Parallel Construction of HCD
Parallel Subgraph Search on HCD
Experimental Results

Conclusion

.C.‘C

Existing Works of HCD Construction

® | CPS [1]: SOTA serial algorithm, 0(m), m: #edges

Concurrent visits of vertices -> inconsistent priority orderings and results

® Other serial methods are much slower

Existing works are hard to parallelize
Divide & Conquer method is infeasible (in experiments)
Design a new union-find-based solution

[1]1 D. W. Matula and L. L. Beck, “Smallest-last ordering and clustering and graph coloring algorithms,” J. ACM, vol. 30, no.
3, pp. 417-427, 1983.

Intuition of Our Solution

e Add vertices to union-find in decreasing coreness

e Meanwhile, build HCD from bottom to up)
e Use pivot to identify tree node and its parent |, /| 4

—// \~// [@ [@

Vertex Rank and Pivot

e Vertex Rank: sort nodes by coreness, and break tie by id
e Pivot: the vertex with the lowest vertex rank in a subgraph

Pivot can uniquely identify k-core and its tree node
1. The pivot is unique
2. The pivot of the k-core is in the tree node

. | @ Nodes with coreness 3
e pivot @ @' Nodes with coreness 2
Nodes with coreness 1

VVVVVV

Vertex Rank and Pivot

1. Group Vertices 2. Find Parent

o)
e —)
— / — — R)
~ ~ ,';'-,“'_"':_ .'\'?'.'s.':'.

(el & =%

* pivot * pivot
old pivot

Our Solution

for k from k,,,,,, down to O:

W=

Find k'-Core Tree Node (k' > k)
Union in union-find

Create Tree Nodes

Find Parent Tree Node

VVVVVV

Our Solution

for k from k,,,,,, down to O:

Find k'-Core Tree Node (k' > k)
Union in union-find

Create Tree Nodes

Find Parent Tree Node

o=

add e to the graph

e pivot
old pivot

VVVVVV

Our Solution

for k from k,,,,,, down to O: ° pivot
1. Find k'-Core Tree Node (k' > k) oldpivo!
2. Union in union-find
3.
4,

Create Tree Nodes
Find Parent Tree Node .
<)

1. Visit ‘s neighbors, identify the k’-core tree node: [-@] <>
k'-core that will union with

VVVVVV

Our Solution

for k from k,,,,,, down to O:

Find k’-Core Tree Node (k' > k)
Union in union-find

Create Tree Nodes

Find Parent Tree Node

o=

2. Union e with neighbors in
union-find and pivot is changed

e pivot
old pivot

@ g e
s

k’-core tree node: [-@] <

VVVVVV

Our Solution

for k from k,,,,,, down to O: ® pivot
1. Find k'-Core Tree Node (k' > k) oldpivo! .
2. Union in union-find PR el {
3. Create Tree Nodes /~ L34 S\ >
4. Find Parent Tree Node \\\ ¥ //// @
3. Group e by pivot into tree node k'-core tree node: [-@] [(9-}

VVVVVV

Our Solution

for k from k,,,,,, down to O:

Find k’-Core Tree Node (k' > k)
Union in union-find

Create Tree Nodes

Find Parent Tree Node

N =

4. In the same CC, the tree node
containing e and « have parent-child
relation

e pivot
old pivot
o)
B \
— g @

k'-core tree node: [-@J {(ﬁ-}

Union-find with Pivot

® Wait-free Union-Find (parallel)
® Maintain the pivot of connected component

® Time: O(np + ma(n) + F) work upon m operations/edges

n. #vertices p: #threads F failures in wait-free union-find
a(n) is the reverse Ackermann function, a(n) < 4 for any practicaln

Parallel Vertex Rank Computation

® O(n) work

.
- 5 R _—
............ 0000
............
R _— R
.

- . tP v _2+1 . vn —_ : —_
14
t;: the i-th thread 1. Distribute vertices 2. Group vertices 3. Place back into array,
p: #threads by coreness obtain vertex rank

—— is parallel

PHCD Analysis

® Hardness: we prove P-Completeness (inherently sequential)
® Space: 0(n), each vertex is in exactly one tree node
® Time: O(n\p + ma(n) + F)

® near-linear work, ma(n) < 4m for any practical n
® uniting all edges in wait-free union-find

n: #vertices m: #edges p: #threads F failures in wait-free union-find
a(n) is the reverse Ackermann function, a(n) < 4 for any practical n

Roadmap

Problem Definition

Parallel Construction of HCD
Parallel Subgraph Search on HCD
Experimental Results

Conclusion

.C\.C

Existing Works of Subgraph Search

Limitations of BKS [1] (time- and space-optimal serial solution)
e Compute in decreasing coreness, rely on the results of larger coreness
e Preprocessing in BKS is inefficient to parallelize

Our Solution

e Vertex-centric solution (no dependency)
e A novel preprocessing

e Efficient to parallelize

[1] D. Chu, F. Zhang, X. Lin, W. Zhang, Y. Zhang, Y. Xia, and C. Zhang, “Finding the best k in core decomposition: A time and space
optimal solution,” in ICDE. IEEE, 2020, pp. 685-696.

Our Solution

s =

Compute HCD
Preprocessing

Score Computation on HCD
Output the Best K-Core

SSSSSS

Our Solution

s =

Compute HCD
Preprocessing

Score Computation on HCD
Output the Best K-Core

Preprocessing of every v:

® gt(v): # neighbors c(u) > c(v)
® cq(v): # neighbors c(u) = c(v)
The rest neighbors c(u) < c(v)

VVVVVV

3. Score Computation on HCD (Intuition)

@ e' =8 +oT O O O f: primary value, e.g., #edges,
k-core = offsprings + k-core tree node #vertices, #triangles...
f(k-core) = Y f(each son) +Af

VVVVVV

3. Type-A Score Computation on HCD

Preprocessing of every v (use in step i):
® gt(v): # neighbors c(u) > c(v)

® cq(v): # neighbors c(u) = c(v)

The rest neighbors c(u) < c(v)

E.g. Average Degree, #vertices, #edges

1 vertex
gt(v) + %(v) edges
Compute Aggregate a9y, Qe 2°tt0m'tUP |27V, 37e
M :l: ummation :l:
282 — o — i ng9v, 14e s Jnf18v, 28e
@ o -
5v, 8e $jdv, be 5v, 8e 4 |4v, 6e
— is parallel i. Vertex-centric ii. Tree node iii. Primary
contribution contribution value of k-cores

Score

2.74

J— —
s 3011

3.2 3

iv. Score of k-cores

3. Type-B Score Computation on HCD

e Similar but more complex compared with type-A
e Triangle: use lower-degree endpoint to check triangle existence
e Triplet: count triplets based on the coreness of neighbors

SSSSSS

Our Solution

s =

Compute HCD
Preprocessing

Score Computation on HCD
Output the Best K-Core

The highest score

VVVVVV

PBKS Time Analysis

® Preprocessing: 0(m) work

® Score Computation: Type-A: 0(n) work, Type-B: 0(m!>) work
® Work-efficient

n: #vertices m: #edges

Work: #steps
Work-Efficient: #steps matches the best serial time complexity

Roadmap

Prob
Para
Para

\...

em Definition
lel Construction of HCD
lel Subgraph Search on HCD

Experimental Results

e Experimental Setting
e Runtime Performance
e Application Performance

e Conclusion

VVVVVV

Dataset Statistics & Experimental Setting

* 10 Public Networks, Up to T00M nodes & 4B edges
« A Quad-Core (up to 40 threads) Linux server with 128G memory

Dataset n m davg T |T|
As-Skitter 1,696,415 11,095,298 13.1 111 902
Live Journal 3,997,962 34,681,189 7.3 360 1755
Hollywood 1,069,126 56,306,653 105.3 2208 678
Orkut 3,072,441 117,185,083 76.3 253 253
Human-Jung 784,262 267,844,669 683.0 1200 4087
Arabic-2005 22,744,080 639,999 458 56.3 3247 28693
IT-2004 41,291,594 1,150,725,436 55.7 3224 53023
FriendSter 65,608,366 1.806,067,135 55.1 304 450
SK-2005 50,636,154 1,949.412.601 77.0 4510 14356
UK-2007-05 105,896,555 | 3.738.,733.648 70.6 5704 79318

Parallel HCD Construction Time

N
(63

e Serial PHCD is 1.24-2.33x faster " ———— 2 o | 3
< 8T _’__,___,._f_:_”) §20 D— T
than LCPS a6 = | as| 5=
e 40-cores 3 Z i §12
e Small graphs: 10x O A | & . .
e Large graphs: 15-20x 1510 20 40 20 40
.. #threads #threads
Significantly faster than LCPS Fig. 4. PHCD’s Speedup to LCPS

b —&— H-—©— 0O —g—= 5 —&— 8K —8— UK —B—

—» Increasing network size

Parallel HCD Construction Time

TABLE 11
. TIME COST OF HCD CONSTRUCTION.
e 1B:thelower-bound cost of the - -
ataset
PHCD (s) LB LCPS PHCD (s) LB RC

UF based methOd AS 0.300 0.30x 1.66x 0.071 0.55x 4.06x
. L) .27 0.36x 1.24x 0.197 0.65x 0.11x
e I.B is~0.5the cost of our method H 0700 | 047x | 1.71x 0.125 | o57x | 63.82x
O 2.518 0.35x 1:37x 0.447 0.28x 25.35x
M HJ 2.224 0.48x [2.05x 0.296 0.37x | 124.97x
Our PHCD is close to lower bound |
IT 10.885 0.44x 1.84x 1.766 0.54x 13.37x
ES 90.730 0.54x 2.12x 8.778 0.77x 58.74x
SK 16.372 0.50x 2.33x 2.609 0.63x 20.23x
UK 37.580 0.43x 2.02x 5.299 0.52x 22.43x

Parallel HCD Construction Time

TABLE 11
. TIME COST OF HCD CONSTRUCTION.
e 1B:thelower-bound cost of the - -
ataset
PHCD (s) LB LCPS PHCD (s) LB RC

UF based methOd AS 0.300 0.30x 1.66x 0.071 0.55x 4.06x
. L) .27 0.36x 1.24x 0.197 0.65x 0.11x
e I.B is~0.5the cost of our method H 0700 047x 1.71x 0.125 0.57x | 63.82x
O 2.518 0.35x 1:37x 0.447 0.28x 25.35x
M HJ 2.224 0.48x 2.05x 0.296 0.37x |124.97x
Our PHCD is close to lower bound |
IT 10.885 0.44x 1.84x 1.766 0.54x 13.37x
ES 90.730 0.54x 2.12x 8.778 0.77x 58.74x
SK 16.372 0.50x 2.33x 2.609 0.63x 20.23x
UK 37.580 0.43x 2.02x 5.299 0.52x 22.43x

e RC isrequiredin Divide and
Conquer method

D&C paradigm is inefficient in
building HCD

Parallel Subgraph Search Time

e gg : _— &4 245} /éf

. est o dEa == |

Score Computation (40-cores) = %/& ki |

e Type-A: Small 30-45x e S - S

Large 50X Fig. 6. PBKS’s Speedup to BKS (Type-A)

e Type-B: ~20x 1 g g% ﬁl B é
Significantly faster than BKS £ 1§ %

i #thr2<§ads . b #thrigads K

Fig. 8. PBKS’s Speedup to BKS (Type-B)

lJ—&6— H—9— 0O —g—= B —==— 8K —©— UK —HB-—

——» Increasing network size

Application: Densest Subgraph

DS: find the subgraph with the highest average degree
« CoreApp: arecent approximate solution[1] opt-D: SOTA serial solution [2]
« PBKS-D: our subgraph search of the k-core with the highest average degree

CorelApp Opt-D PBKS-D

Dataset davg | time (s) | time (s) davg | time (5)

. AS 150.02 1.145 1374 | 178.801 0.196

Our Solution PBKS-D:] 374,71 7943 | 4832 | 387.027 | 0529

1 . _ H 2208 3.002 3.635 2308 0.542

1. a- -approx|mate solution 0 438.64 20.14 11.72 | 455.732 1.159

2 31 2013.88 15272 | 14457 | 2114.915 3.851

2. outputs denser subgraph A 3247 | 40.703 | 35359 | 324892 | 4511

T 3238.92] 90.86 | 77276 | 4016.37 8.036

3. 10x faster FS 513.85 | 1041.528 | 836279 | 547.035 | 30.022

. ki . SK 4513.00 | 202.682 | 125.04 | 4514.99 | 12.890

OUtperforms existing solutions UK 5704 300.67 | 299.186 | 5704.99 | 24.243
dqvg is average degree Better is

Opt-D, PBKS-D have equab@lébut

[1] Fang, Yixiang, et al. Efficient algorithms for densest subgraph discovery. PVLDB 2019.
[2] D. Chy, F. Zhang, X. Lin, W. Zhang, Y. Zhang, Y. Xia, and C. Zhang, “Finding the best k in core decomposition: A time and
space optimal solution,” in ICDE. IEEE, 2020, pp. 685-696. 42

Application: Maximum Clique

MC: find the largest subgraph where every pair of nodes is adjacent (NP-Hard)
e PBKS-D: our subgraph search of the k-core with the highest average degree

« S*is the output of PBKS-D

PBKS-D (output S*)

Dataset [TA7C C S™ [[S7|/n

AS 0.027%

L] v 0.011%

The Output Subgraph §*: H v 0.207%
1. Contains MC in 7/10 datasets gJ . ??3‘7‘3
. % : 0 . /0

2. Size of $* is on average 1% of G 3 ~ 0.014%
Potential pruning strategy for MC T v 0.015%
FS 0.08%

SK 7 0.009%

UK 7 0.005%

S* contains the MC

The node proportion of
S* in the whole graph 43

Roadmap

e Problem Definition

e Parallel Construction of HCD

e Parallel Subgraph Search on HCD
e Experimental Results

v Conclusion

Conclusion

Parallel HCD Construction
« P-Complete Proof (difficult to parallelize effectively)
* First parallel algorithm: near-linear work O (n\/p + ma(n) + F)

Parallel Subgraph Search on HCD

* First parallel algorithm

« Score Computation: work-efficient

0(n) for type-A, 0(m'®) for type-B, after 0(m) preprocessing

Useful in Related Problems

» Application: Approximate Densest Subgraph, Maximum Clique
* Runtime: Outperform existing works significantly

Q&A

VVVVVV

