1 of 32

Autonomous Mobile Manipulation

Manipulation: Forward Kinematics, Manipulability

C. Papachristos

Robotic Workers (RoboWork) Lab

University of Nevada, Reno

CS-791

2 of 32

Forward Kinematics

 

CS791 C. Papachristos

3 of 32

Forward Kinematics

 

CS791 C. Papachristos

4 of 32

Forward Kinematics

 

 

 

 

 

 

CS791 C. Papachristos

5 of 32

Forward Kinematics

 

 

 

 

CS791 C. Papachristos

6 of 32

Forward Kinematics

 

 

 

(zero-“pitch” i.e. ratio of linear/ angular velocity)

(unit)

 

 

 

 

CS791 C. Papachristos

 

7 of 32

Forward Kinematics

 

 

 

 

(zero-“pitch” i.e. ratio of linear/ angular velocity)

(unit)

 

 

CS791 C. Papachristos

 

 

8 of 32

Forward Kinematics

 

 

 

 

(zero-“pitch” i.e. ratio of linear/ angular velocity)

(unit)

 

 

CS791 C. Papachristos

 

 

9 of 32

Forward Kinematics

 

 

 

 

(Point on rotation axis –�origin of revolute joint frame)

(Space Frame transformation �– Pre-multiply)

 

 

 

Revolute: Axis vector normal to rotation

CS791 C. Papachristos

10 of 32

Forward Kinematics

 

 

(No rotation�– prismatic)

 

(Space Frame transformation �– Pre-multiply)

 

 

 

 

Prismatic: Axis is the vector by which joint extends

CS791 C. Papachristos

 

11 of 32

Forward Kinematics

 

 

(Space Frame transformation �– Pre-multiply)

 

 

 

 

Revolute: Axis vector normal to rotation

CS791 C. Papachristos

12 of 32

Forward Kinematics

 

 

 

 

 

 

CS791 C. Papachristos

13 of 32

Forward Kinematics

 

 

Frame:

 

(Body Frame transformation �– Post-multiply)

 

 

 

Revolute: Axis vector normal to rotation

CS791 C. Papachristos

14 of 32

Forward Kinematics

 

 

Frame:

(Body Frame transformation �– Post-multiply)

 

 

 

 

Prismatic: Axis is the vector by which joint extends

CS791 C. Papachristos

15 of 32

Forward Kinematics

 

Frame:

 

(Body Frame transformation �– Post-multiply)

 

 

 

 

Revolute: Axis vector normal to rotation

CS791 C. Papachristos

16 of 32

Forward Kinematics

Velocity Kinematics – Jacobian (“Analytical”)

Calculate End-Effector velocity as function of manipulator arm joint velocities

  • Assuming we express Forward Kinematics in minimal coordinates form:

    • Take time derivative (& apply chain rule):

    • “Analytical” Jacobian of robot arm:

 

 

 

 

 

 

 

 

 

A non-linear�equation of

some form

CS791 C. Papachristos

17 of 32

Forward Kinematics

Velocity Kinematics – Jacobian (“Analytical”)

Calculate End-Effector velocity as function of manipulator arm joint velocities

  • Forward Kinematics in minimal coordinates form:

    • Take time derivative (& apply chain rule):

    • “Analytical” Jacobian of robot arm:

 

 

 

 

 

 

 

CS791 C. Papachristos

 

18 of 32

Forward Kinematics

 

 

 

 

 

 

 

 

Have POE general formula

19 of 32

Forward Kinematics

 

 

 

 

 

 

C. Papachristos

 

 

 

Have POE general formula

 

 

20 of 32

Forward Kinematics

 

 

 

 

 

:Screw axis calculated at Home

 

 

 

 

 

 

 

 

CS791 C. Papachristos

 

 

Have POE general formula

21 of 32

Forward Kinematics

 

 

 

 

 

 

 

 

 

CS791 C. Papachristos

 

Have POE general formula

 

 

 

 

22 of 32

Forward Kinematics

 

 

 

 

 

 

 

 

 

 

CS791 C. Papachristos

23 of 32

Forward Kinematics

 

 

 

 

Note: At a Singularity, one or more of the�Manipulability Ellipsoid axes get “squashed”

CS791 C. Papachristos

24 of 32

Forward Kinematics

 

 

Joint�Torques

End-Effector

Wrench

 

We may derive Force & Wrench Ellipsoids.

Note: “Reciprocal” relationship to Manipulability Ellipsoid.

 

 

CS791 C. Papachristos

 

25 of 32

Forward Kinematics

 

 

 

Joint�Torques

End-Effector

Wrench

CS791 C. Papachristos

 

 

26 of 32

Forward Kinematics

 

 

 

(i.e. some columns become�dependent on each other)

“Full Rank Jacobian”

“Singular Jacobian”

CS791 C. Papachristos

27 of 32

Forward Kinematics

Kinematic Singularity

Configuration where manipulator Jacobian (instantaneously) loses its maximal rank

    • Jacobian provides a transformation from joint velocities to end-effector Twist and�end-effector Wrench to joint forces/torques

  • Therefore its rank can ever be:

  • Kinematic Characterization:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS791 C. Papachristos

28 of 32

Forward Kinematics

Manipulability

Jacobian provides a mapping from Joint velocity space topology to End-Effector velocity topology

  • Simple 2R Robot example:
    • 2R Robot: Joint space velocity circle maps to End-Effector velocity ellipsoid

 

 

 

 

CS791 C. Papachristos

29 of 32

Forward Kinematics

 

 

 

 

 

 

 

 

 

 

CS791 C. Papachristos

30 of 32

Forward Kinematics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS791 C. Papachristos

31 of 32

Forward Kinematics

Manipulability

Body(/End-effector) Jacobian provides a convenient parametrization to intuitively understand the Manipulability potential at a certain configuration

  • Mapping relationship is w.r.t. Body(/End-effector) frame:

  • Represent Body Jacobian as:

    • Intuitive representation: “Separation” in End-effector frame �with same unit scaling (linear velocities / angular velocities)

 

 

 

 

 

 

 

: Angular velocity Body Jacobian

: Linear velocity Body Jacobian

 

 

 

 

 

 

CS791 C. Papachristos

32 of 32

Time for Questions !

CS-791

CS791 C. Papachristos