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Introduction

My work focuses on developing hardware,
software, and algorithms for
Electroencephalography (EEG) monitoring of
patients with epilepsy.

| am a psychology methods researcher, with
the emphasis on the methods (Data
Scientist?).



Focus of Today's Talk

Epilepsy

Clinical Decision Support

o

Classification

Imbalanced Labels
Classical Methods

Bayesian Optimization



o What is Epilepsy

Epilepsy is the tendency to have unprovoked and
recurrent seizures.

Seizures are caused by neuronal hyperexcitability and
excessive electrical discharges.

There are over 40 types of epilepsy and seizures, of which
individuals may experience several.



Absence Epilepsy

:

Absence seizures can develop during childhood (6- to 7-years) or

g

early adolescence (~12-years).

Constitutes around 10% of paediatric epilepsy patients.

Clinical symptoms include...

Blank stare
Interrupted activities
Slowed speech

Upward rotation of the eyes



N NHS Epilepsy Diagnosis
Diagnosing an epilepsy syndrome is primarily reliant on:
® Patient report

e |dentification of clinical features in diagnostic imaging
o Electroencephalography (EEG)

o Magnetic Resonance Imaging (MRI)

o Computed Tomography (CT)

o Video recordings



g NHS Epilepsy Diagnosis
A patient’s medical history, along with ~¥30-minute scalp EEG
assessment (sometimes also measuring heart rate and blood

oxygen saturation), is commonly first assessed.

During the assessment, the patient may be asked to

hyperventilate or exposed to flashing lights (photic stimulation)
to provoke a seizure.

The patient is monitored by staff, who note events on the
records to aid retrospective analysis. If a diagnosis is suspected,

but not gained, a patient may then have a longer EEG
assessment.

https://kidshealth.org/en/parents/eeg.html



Data Analysis
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Q

Manual review of EEG is

® Time consuming
® Expensive
® Prone to error

95-99% of the recorded data is useless for diagnosis



g Data Analysis

N

Algorithms to assist medical practice have
been around for decades.

e Computer aided ECG’s have been around since the
1970’s.

e Use static rule-based models (heuristics) with limited
accuracy.

Machine learning models are increasingly
being applied to diagnostic imaging:

e Radiology
e Dermatology
® Clinical pathology
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Basic Signal Processing System

Pre-processing Expert System
Prepare the raw signal The global strategy that is
Feature extraction developed

i e Which features to select
Quantify values or features of the e How to combine features
signal (e.g. biomarkers or artefacts) e Account for contextual information

Classification

Applying a threshold or
model-based criteria

e Model-based classification requires
additional feature reduction or extraction,
and a training or supervised learning step
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Use

Aim

Use
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Basic Signal Processing System

Algorithms generally can be designed for efficiency (online) or accuracy (offline)

Seizure-event detector

Identify seizures with the greatest possible
sensitivity/specificity/precision

Provide a summary of frequency, duration, and time of a

patient's seizures to enable physicians diagnose and better
titrate therapy

Seizure predictors

Predict seizures with the greatest accuracy and time in
advance

Trigger neurostimulators to prevent a seizure
Provide warning that a patient may have a seizure

Aim

Use

Seizure-onset detector

Detect the onset of a seizure with the shortest possible
delay

Initiate functional neuroimaging to localise the cerebral
origin of a seizure

Trigger neurostimulators to affect seizure progression
Alert a carer to the patient’s condition or call emergency
response




Basic Signal Processing System

g

Algorithms generally can be designed for efficiency (online) or accuracy (offline)

Seizure-event detector
Aim
e |dentify seizures with the greatest possible
sensitivity/specificity/precision
Use
e  Provide a summary of frequency, duration, and time of a
patient's seizures to enable physicians diagnose and better

titrate therapy




> Basic Signal Processing System

N

Q

Models can be trained and tested in various ways for different use cases

Patient-General Patient-Specific
Training Training
e Models are trained on records from a e Trained only on data from an individual
number of patients and tested on a patient to detect/predict future seizures
separate test group e A patient general algorithm is adapted to fit
Use an individual patient (e.g. Semi-supervised
e Clinical decision making (diagnosis, Reinforcement Learning/Transfer Learning)
treatment) Use

e Ambulatory (home) patient monitoring



Basic Signal Processing System

X

g

Models can be trained and tested in various ways for different use cases

Patient-General
Training
e Models are trained on records from a
number of patients and tested on a
separate test group

Use
e Clinical decision making (diagnosis,
treatment)



Dataset with Ecological Validity
Large Feature Space
Classical Models

Exploration Over Pipeline Components &
Hyperparameters (Bayesian Optimisation)

Study 1



Data Collection
~

EEG records from 21 pediatric patients (ages 4-13) diagnosed
with absence epilepsy (~11hrs).

g

Patients underwent a routine clinical EEG assessment, lasting
approximately 30 minutes, and were asked to hyperventilate or
exposed to photic stimulation to provoke a seizure.

Data from these sessions were anonymized and burned to a CD
by a clinical physiologist after being used for diagnostic
purposes.
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Pre-processing

Baseline (47.60%)

All data that was not
marked represents
interictal EEG with no
content of interest
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Pre-processing

AMPSAT (27.41%)

Segments with amplifier
saturation, mostly at
the start of the
recordings where the
signals data quality is
being improved
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Pre-processing

Artefact (22.96%)

Electrical phenomena
which distorts the
neural signal such as
respiratory, eye
movement, muscle, or
environmental sources
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Pre-processing
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Pre-processing

Notched Rhythmic
Waveforms
(0.54%)

Benign activity likely a
result of the patient
being in a state of
drowsiness
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& Pre-processing

:

Spikes (0.04%) .

Events that in isolation
would be unlikely to be
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Pre-processing

Binary

Ictal
® Generalised Epileptiform Discharge

Inter-ictal

® Baseline

e Artefact

e Notched Rhythmic Waveforms
® Spikes



> Feature Extraction

X

Quantify values or features of the signal (e.g. biomarkers or artefacts)

The data was epoched into window sizes of 2 seconds with a 1 second overlap (most records were sampled at
256Hz). In each epoch, for each channel, the following features were extracted...

Time Frequency Time-Frequency
Correlation Coefficients Correlation Coefficients Mean
Eigenvalues Eigenvalues Standard Deviation
Median Power Log Sum
Relative Power Mean Absolute
Ratio

To get all these features for the full dataset (11hrs) takes around 6:03 mins on my laptop



Dimension Reduction Principal Component Analysis (PCA)

X

g

Dimensionality reduction algorithms remove multicollinearity and retain important
information by creating new synthetic features through combining features

PCA aims to separate a set of mixed signals into their !JE., It "|= .
component sources. = '-:_;:-:'_:

PCA aims to find vectors that best explain a data's 1“ 'm!\

variability by transforming data onto an equal or lower i :

dimensional subspace, combining features that are highly =~~~ "% .'"-.

correlated. "'-._'_

PCA can reduce a model's complexity, run time, and g TR
potential for overfitting to the training data. = :-.;\ .

Correlation heatmap of features involving channel C3 acrossthe
whole of P19’s EEG session



’ Classification Support Vector Machine (SVM)

J

N

SVMs are discriminative algorithms that distinguish
classes of objects by finding a hyperplane that

provides the maximum margin of separation from .
classes. ®

If data can be linearly separated, then a 'hard’
margin of separation can be used; whereby a point O
on the edge of a class is used as the support vector
for the decision boundary.




> Classification Support Vector Machine (SVM)
N

g

10~

s 0
However 'hard’ margins are sensitive to outliers, so often aid o
a ‘soft’ margin is used to allow for some errors (C). ol .
2 1 op
If classes cannot be linearly separated, the input feature =,
space can be projected to higher dimensions to create a
. . 02
nonlinear separation boundary
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> Classification K-Nearest Neighbours (KNN)
N

g

KNN is a lazy learner that memorizes training data, rather @
than learning a discriminative function, assigning data ‘® L -
. . l ‘
points to the class with the greatest number of "nearest - ' -
neighbors. -
. . o _
The number of nearest neighbors (k) and a distance -
metric, to measure the distance between samples, need
to be specified. 1o —
A1l
08
from sklearn.neighbors import .l.-. l-
pipe knn = F‘i;;leir:‘z(:(:i"f'::, S o 06 A‘:: e ; %‘ = 8 -.-
L1elf, ¥ )11) £ Ak .
pipe kr (vis_data, y train) 8'0‘4 A 'I < .-
plot_dec 1_regions ( jé{d
4T 1;; knn) 02
abel)
abel) O'0010 01 02 03 04 05 06

D1_Ratio




Classification Decision Tree

<

:

Decision trees split the data based on the
features that best separates data into the
class labels.

D1_Ratio <0.197
gini = 0.457

=

Data is split until all the samples within
each node all belong to the same class or a
maximum depth is reached.

1l DT = DecisionTreeClassifier(criterion='gini', o
2 max_depth = None, 898" 5
3 random_state=RANDOM_STATE) 2 S
4 Dfl' fit(vis_data, y_train) >

6 dot _data = export graphviz (DT, out_ file=None,

1 feature names-[x axis_label, y axis_label],
class_ names=feature reduced[ class']. unique(), 00
filled=True, rounded=True,
special_characters=True)

D1 Ratio

DI Ratio

’ graphviz.Source (dot_data)




‘. Classification Random Forest (RF)

N

N

A RF is an ensemble of multiple decision trees which are averaged together.

A random forest draws a random bootstrap sample of data and features to grow
individual decision trees on. This process is repeated n times and the prediction of each
tree is aggregated to assign class labels.




Optimisation and Cross-Validation

A Bayesian optimization method was used to search over classification pipeline
components and model hyperparameters for each classifier. The search space begins
with a random combination of components and hyperparameters, which are optimized
over 1000 iterations.



Optimisation and Cross-Validation

-y

N

The objective function is used at each iteration to update
a prior from a history of model configuration and score
pairs. The probability model P(score|configuration) is
used to search for the most promising candidates and is
therefore quicker than evaluating all possible
combinations (e.g. GridSearch).

There are a few different algorithms for bayesian
optimisation, such as gaussian processes and
tree-structured-parzen-estimators.

Objective function model

Estimated objective function value

c sigma
Fig. 3: SVM parameter optimization using Bayesian optimization
algorithm.

Nandy, A, Alahe, M. A, Uddin, S. N., Alam, S., Nahid, A. A, & Awal, M. A.
(2018, January). Feature Extraction and Classfication of EEG Signals for
Seizure Detection. In 2019 International Conference on Robotics, Electrical
and Signal Processing Techniques (ICREST) (pp. 480-485). IEEE.



> Optimisation and Cross-Validation

N

Q

Gaussian Mixture Model’s (GMM) or regression models can be
used for modelling the probability.

For TPE's a prior distribution needs to be defined for the
hyperparameters, although these can just be uniformly
distributed if there is little previous guidance.

The first few iterations just perform a random search to build a
distribution of the best observations for each hyperparameter.
A GMM I(x) is fitted to parameters associated with the smallest
loss function values, and another GMM g(X) to the remaining
values to choose a parameter value X that maximizes the ratio

1(X)/g(x).

Tree of Parzen Estimators (TPE)

Probability distribution for group #1
Probability distribution for group #2
'y Candidate

°
> ..
: 4 2 4

http://neupy.com/2016/12/17/hyperparameter_optimization
_for_neural_networks.html



X

The distributions are modelled using parzen-window density
estimators so that each sample defines a gaussian distribution
which can be stacked together and normalised to give a
probability density function.

The tree structure refers to the fact parameters can have
tree-structured dependencies; for example, the Gamma
parameter of a SVM can only be selected if the kernel is chosen to
be a RBF rather than linear.

> Optimisation and Cross-Validation  Tree of Parzen Estimators (TPE)

Parzen estimators for 1S DlOS
with 0.1 standard de ll

Parzen estimators for 2 samples
wi I'\ 0.1 t\nd.\vd deviation

Parzen estimators for 3 sa ulcx
with 0.1 standard deviatio:

Parze stimators for 4 samples
wil th 0 1 standard deviation

ar/ stimators for 5 samples
moz t ndard deviation

Par stima lov for 6 samples
w m O 1 standard deviation

http://neupy.com/2016/12/17 /hyperpara
meter_optimization_for_neural_networks
.html



Optimisation and Cross-Validation  Tree of Parzen Estimators (TPE)

° ! from hypercpt import fmin, tpe, hp, STATUS OK, Trials
frem sklearn.preprocessing import StandardScaler

4 PARAM_DIST = {

- ‘C': hp.uniform('C', 0, 8),

£ 'kernel': hp.choice('kernel', |

7 {"ktype': 'linear', 'gamma’:‘'auto'), # gamma ignored

{'ktype': "sigmoid’, 'gamma': hp.uniform('sig_gamma', 0, 1)},

{"ktype':'poly’, "gamma': hp.uniform(‘'poly_gamma', 0, 1)},

{"ktype': 'zbf','gamma’: hp.uniform('rbf gamma', 0, 1)}]),

11 ‘scale’: hp.choice('scale’, [0, 1])

121 )

i def hypercpt_train_test(params):
1: X_ = X_train(:]

1 if 'scale’ in params:

18 if params['scale'] == 1:

19 sc = StandardScaler()

X_ = sc.fit_transform(X )

clf = SVC(C = params['C'],
kernel = params('kezrnel’'](['ktype’],
gamma = params|['kernel’']['ga=ma‘],
)

return cross_val score(clf, X_, y_train, cv = 5).mean()

28 def cbjective (params):
3 acc = hyperopt_train_test(params)
return {'loss': -acc, # minus because we need to reduce
‘status': STATUS_OK]

34 trials = Trials()
35 best = fmin(objective, PARAM DIST,
36 algc=tpe.suggest, max_evals=500,
37 trials=trials)
9 print('best:’)
print (best)

C 200+ [N 500/500 [01:02<00:00, B8.06it/s, best loss: -0.9875]
best:
{*C': 0.7576142466789729, 'kernel': 0, ‘'scale': 1}
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Optimisation and Cross-Validation

N

Feature Selection None

SelectFromModel(RF)

Classification Dummy Classifier
KNN

SVM

RF

Max Features

Nearest Neighbors
Algorithm
p
Leaf Size
C
Kernel
Gamma
Number of Estimators
Criterion

Max Depth
Min Samples Split
Max Features

randint(1, 541)

randint(1,10)
choice(ball tree, kd tree, brute)
randint(1,10)
normal(m=30, sd=8)
uniform(0.05, 8)
choice(linear, rbf)
uniform(0.005, 2)
normal(m=2000, sd=500)
choice(Gini, Entropy)
choice(None, randint(1, 50))
uniform{0.0l, 1.
uniform(0.01, 1.




S Optimisation and Cross-Validation

L

N

Pipelines were cross-validated using a 5-fold
StratifiedKFold so each fold had a similar proportion of

Training (1 Bayes Iteration)

seizure and non-seizure data to the full data. Fold 1 Fold 2 Fold 3

Each fold was undersampled to balance the number of I
ictal and interictal data for training.

Model Model Model

Separately for each classifier, at each trial of the Fipelineln Sipeinei i Rigeline

Bayesian optimization training, features could be
selected using a random forest, extracted using PCA, or
both.

Average Performance of Pipeline



.’ Optimisation and Cross-Validation Why Undersample?
R

Question: How can | get 98.55% accuracy using 1 rule/line of code on a 20 minute EEG

record where a patient has 3 seizures each lasting 5.8 seconds?

patient record




Optimisation and Cross-Validation Why Undersample?

N
N

Question: How can | get 98.55% accuracy using 1 rule/line of code on a 20 minute EEG
record where a patient has 3 seizures each lasting 5.8 seconds?

patient record

98.55%




Optimisation and Cross-Validation Why Undersample?

N

Question: How can | get 98.55% accuracy using 1 rule/line of code on a 20 minute EEG

record where a patient has 3 seizures each lasting 5.8 seconds?

patient record

98.55%

Answer: Just always predict a patient is never having a seizure
> predictions = [0]*len(patient _record)

(Also | find that weighting classes or up-sampling tends to perform worse as the imbalance is huge in this case)



Performance Evaluation

Patient-specific leave-one-out cross-validation

® Performance is assessed in a manner that is like how the models would be used in
practice




N Performance Evaluation

The best pipelines for each classifier (SVM, RF, KNN) on each held-out dataset
were selected and re-trained on an undersample of the full held-out dataset it
was previously cross-validated on. This is because during cross-validation it was

th
only trained on 4/5 of data.

These models were then also grouped into a soft voting ensembles (SVE’s) for
each patient.



Training
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Training
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SVM Hyperparameters on data where P2 was left out (random state = 1)

Maximum Features (Sel) Nurmber of Components (PCA} Erroe Penalty Parameter {C) F1 S«we. 5
. 10 .
300
' 08
7T Rl
Ao
06
300 ° A os
.
w004 ° s i o
100 02
06
T 00
§ Kernel Type Kernel Coefficient (rbf) b
] e s ma— e . s - 020
04
08
015
06
010
02
04
0054 . AL
K v 02
inesr -—— - - - ——— e 0,00
00 oo
0 200 400 eco 00 1000 0 m 400 00 BOO 1000 [} 200 400 €00 %00 1000




Training
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SVM Hyperparameters on data where P2 was left out (random state = 2)

Maximum Features (Sel) Number of Components (PCA) Error Penalty Parameter (C) F1 S<Mel b
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Fl.Score
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Pipeline Components
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Traini ng Feature Selection
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Traini ng Feature Selection
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Test Results

P20_KNeighborsClassifier

True Label

Baseline

Predicted Label

Seizure

P20_RandomForestClassifier

P20_SVC

a9
Baseline Seizure
Predicted Label
P20_soft_mv
Baseline 4
Seizure 3 51
Baseli Seizure




Test Results

P20_soft_mv

FP+EN
Accuracy =1 — FP+FN+TP+TN
False Positive (FP)

Baseline 1

o TP
Sensitivity =
2 TP+FN
L.
g TP
7 Precision = =
False Negative (FN) True Positive (TP) TP+FP

Seizure 1 o N
F1=2 SensitivityxPrecision
Sensitivity+Precision

Baseline Seizure
Predicted Label




.0 Test Results

N

Metric = Accuracy

100 -

m -
€0 - Classifier
v mm KNN
& == RF
- SVM
40 - SMV
m -
0
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Classifier

FP+FN
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<. Test Results
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Metric = Fl-score

Classifier
v mmm KNN
& mmm RF

. SVM

- SMV

PL P2 P3 P4 PS5 P6 P7 P8 PO P10 P11 P12 P13 Pl4 PIS P16 P17 P18 P19 P20 P21 Ave
Classifier

_— TP . s i
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0. Test Results

:

Metric = Fl-score

Classifier
v mmm KNN
& mm RF

. SVM

. SMV

P7 P8 P9 P10 P11 P12 P13 P14 P15 P14 P18 P19 P20 P21 Ave

Classifier

— TP . e o
SenS|t|V|ty = Precision = F1 =2 SenS!t!V!tnyreCI.Sl.On
S TP+FP Sensitivity+Precision




0. Test Results
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SVM Binary I
. Binsey




0. Test Results
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Test Results

ACC SEN SPEC PREC F1  FPR/h
9.5 879 926
2 9% 96 - - -
2 ® 919
9 M3 937 - = .
9539 9033 99.07
95.81 9137 9893 - L -
97.37 968 9783 - = =
97.5 9703 9783 - s :
99.1 918 0.5
- 972 - = - 0
i 9% - . - 0.037
T8 == i 3 = )
1 - . . : Ny
%7 - R » - 8
7.3
. 984 10  87a - 0.23
99.39 8814 9955 9378 9036 15.77
9344 8039 9422 6515 7064 20749
9893 8907 9911 8657 8528 31.65
9895 9385 9905 K773 8969 33.63
99.05 9136 9917 8771 8859 2921
99.11 9262 9921 8502 8778 21.97
99.09 K314 9949 8555 8166 17.91
98.88 9382 9808 8444 87.83 363




General Conclusions

N
Datasets with lots of artifactual (noisy) data, means there's
likely to be increased instances of false positives.

Some authors...
...group detection’s together.
...remove artefacts before training and testing models.

...do not consider a detection false if within 1 minute of
a seizure!



General Conclusions

N
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Features selected by random forests reflect the presentation
of absence seizures. This may enable...

...a seizure specific EEG channel profile based on the
focal area of seizures.

...patient specific limited channel EEG for long term
monitoring based on their unique seizure topography.



General Conclusions

N
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Finding optimal parameters is important...
... for model fit

... to ensure differences between models are not
because of default/selected parameters



N General Conclusions

Model performance tends to be worse on records
with no seizures present.

e Algorithms could assist with collecting longer EEG
records.

® Another study found 30% of children who had no
clinically detected seizures in a standard recording
procedure had them detected in 1hr EEG recordings.



General Conclusions

¥

Use of Bayesian hyperparameter optimisation

e Authors often do not make it clear how they arrived at
certain hyperparameters

Most complete descriptions of the models
performance in raw seconds



N General Conclusions

Comparison of Binary and Multiclass models with a

new dataset marked freely rather than in windowed
bins

First use of NHS clinic data scans collected during
diagnostic routine

e They tend to be noisy at the start of the record and while
they are asking the patient to breathe heavily.



Whats Next?
~

g

Larger datasets

® NHS: Increase to 37 Patients (26hrs) with absence seizures
e TUH: 11 Patients (6hrs) with absence seizures

® TUH: 65 Patients (47hrs) with generalised seizures

e CHB: 24 Patients (980hrs) with generalised seizures

Ensemble Models

e Balanced Bagged KNN

e Balanced Random Forest

e Randomly Undersampled Boosted Trees (RUSBoost)
e LightGBM



Whats Next?
~

g

Deep learning architectures

e Multilayer Perceptron (MLP)
e Convolutional Neural Network (CNN)
® Recurrent Neural Network

BOHB — Bayesian Optimization and Hyperband

Varying window sizes based on data (Changepoint)



Computing hardware and software

Hardware Software
Dell XPS 13 9370 laptop Python 3
Lancaster High End Computing Cluster e Numpy, Pandas
Google Colab (GPU & TPU) PyWavelets, SciPy
Scikit-learn
Imbalanced-learn
Hyperopt, HpBandSter
LightGBM

e Tensorflow 2.0 (Keras API)
Jupyter Notebooks



GitHub

~"
:

Prrub.com Lels wcure-De w0 *:n0O > 06 =

Eldaved3 / Sezure-Detection-Tutorials @Owache o *ow 9 1 -
© Code st 0 ° & Wi 1 decurty pe et
A varies of tutorials teaching the use of Python for epleptic seidure detection 0n open 1ource datatets -
eptepsy  tugrah  JokRAeem tecsamiew hesy  Masageio
@ 8 comme 1 teanch O release erne

New ol reguent Creste vem Sie  Upiond Bles  ind e m

rested wang Colaboeat 4 2y
rested ¥ P o 30
reated w i >
o0 01 Ipploiope pynd rested wung Colaborston monthy 55

Seizure Detection Tutorials

This senes of NotebOCKS demondtrate o
Getection.

APACALON Of BN DAOCESSNG aNd MAChne earning CassACtON 1O epdeptic sedure

Currently Theee opan-10urse datiets are used
1. The Epleptoioge Database™
2. UPenn and Mayo Cinkc’s Seaure Detecton Cralienge™”
3. CHB-MIT Scaip EEG Database”

e databases exst BUt Nave Bhive brvtatons
® The Ecropesn Epdepsy Database (epdepty-Catabase o

© By Well documented

© €30008000 3 year icence

© IEEG (hitpa/wwwsveg oG

W P Typetere toseach o @0 -BvOmL R ~rwpaw i NS0




@ Clinical Application
* Prof. Vincent Reid (Professor of Psychology)
« David Elliott (PhD Student)
« Aidan Moutrey (Undergraduate Student)

* Dr. Judith Lunn (Lecturer in Medical School)
* Dr. Christian DeGoede (Consultant Paediatric Neurologist)
* Dr. Munni Ray (Consultant Paediatric Neurologist)

* Dr. Rosemary Belderbos (Consultant Paediatrician)

» Staff from Preston, Blackburn, and Leeds NHS Hospitals
* Dr. Nicholas Combes

P role Ct s Giria Wilkiison
* Andrew Lancaster
* Heather Collier

Hardware
* Barrie Usherwood (Electronics/Research Technician)
* Dr. Peter Tovee (Electronics/Research Technician)

Software

e

* Dr. Abe Karnik (Lecturer in Computing and Communications)
« Kristoffer Geyer (PhD Student)
* Nathan Rutherford (Undergraduate Student)

Data Analysis

il

* Dr. Rebecca Killick (Senior Lecturer Statistics)
* David Elliott (PhD Student)



Thanks to our sponsors!

Digital
Lancashire/

MIRALIS ‘Q

Relative

INSIGHT




