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Introduction

My work focuses on developing hardware, 
software, and algorithms for 
Electroencephalography (EEG) monitoring of 
patients with epilepsy.

I am a psychology methods researcher, with 
the emphasis on the methods (Data 
Scientist?).



Focus of Today's Talk



What is Epilepsy

Epilepsy is the tendency to have unprovoked and 

recurrent seizures.

Seizures are caused by neuronal hyperexcitability and 

excessive electrical discharges.

There are over 40 types of epilepsy and seizures, of which 

individuals may experience several.



Absence Epilepsy

Absence seizures can develop during childhood (6- to 7-years) or 

early adolescence (~12-years).

Constitutes around 10% of paediatric epilepsy patients.

Clinical symptoms include…
● Blank stare

● Interrupted activities

● Slowed speech

● Upward rotation of the eyes



NHS Epilepsy Diagnosis

Diagnosing an epilepsy syndrome is primarily reliant on:

● Patient report

● Identification of clinical features in diagnostic imaging

○ Electroencephalography (EEG)

○ Magnetic Resonance Imaging (MRI)

○ Computed Tomography (CT)

○ Video recordings



NHS Epilepsy Diagnosis

A patient’s medical history, along with ~30-minute scalp EEG 

assessment (sometimes also measuring heart rate and blood 

oxygen saturation), is commonly first assessed.

During the assessment, the patient may be asked to 

hyperventilate or exposed to flashing lights (photic stimulation) 

to provoke a seizure.

The patient is monitored by staff, who note events on the 

records to aid retrospective analysis. If a diagnosis is suspected, 

but not gained, a patient may then have a longer EEG 

assessment.



Data Analysis

Manual review of EEG is

● Time consuming
● Expensive
● Prone to error

95-99% of the recorded data is useless for diagnosis



Data Analysis

Algorithms to assist medical practice have 
been around for decades.
● Computer aided ECG’s have been around since the 

1970’s.
● Use static rule-based models (heuristics) with limited 

accuracy.

Machine learning models are increasingly 
being applied to diagnostic imaging:
● Radiology
● Dermatology
● Clinical pathology



Basic Signal Processing System

Pre-processing
Prepare the raw signal

Feature extraction
Quantify values or features of the 
signal (e.g. biomarkers or artefacts)

Classification
Applying a threshold or 
model-based criteria

● Model-based classification requires 
additional feature reduction or extraction, 
and a training or supervised learning step

Expert System
The global strategy that is 
developed
● Which features to select
● How to combine features
● Account for contextual information



Basic Signal Processing System

Seizure-event detector
Aim

● Identify seizures with the greatest possible 

sensitivity/specificity/precision

Use

● Provide a summary of frequency, duration, and time of a 

patient's seizures to enable physicians diagnose and better 

titrate therapy

Seizure predictors
Aim

● Predict seizures with the greatest accuracy and time in 

advance

Use

● Trigger neurostimulators to prevent a seizure

● Provide warning that a patient may have a seizure

Seizure-onset detector
Aim

● Detect the onset of a seizure with the shortest possible 

delay

Use

● Initiate functional neuroimaging to localise the cerebral 

origin of a seizure

● Trigger neurostimulators to affect seizure progression

● Alert a carer to the patient’s condition or call emergency 

response

Algorithms generally can be designed for efficiency (online) or accuracy (offline)
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Basic Signal Processing System

Patient-General
Training

● Models are trained on records from a 

number of patients and tested on a 

separate test group

Use

● Clinical decision making (diagnosis, 

treatment)

Patient-Specific
Training

● Trained only on data from an individual 

patient to detect/predict future seizures

● A patient general algorithm is adapted to fit 

an individual patient (e.g. Semi-supervised 

Reinforcement Learning/Transfer Learning)

Use

● Ambulatory (home) patient monitoring

Models can be trained and tested in various ways for different use cases
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● Dataset with Ecological Validity
● Large Feature Space
● Classical Models
● Exploration Over Pipeline Components & 

Hyperparameters (Bayesian Optimisation)

Study 1



Data Collection

EEG records from 21 pediatric patients (ages 4-13) diagnosed 
with absence epilepsy (~11hrs).

Patients underwent a routine clinical EEG assessment, lasting 
approximately 30 minutes, and were asked to hyperventilate or 
exposed to photic stimulation to provoke a seizure.

Data from these sessions were anonymized and burned to a CD 
by a clinical physiologist after being used for diagnostic 
purposes.



Pre-processing

Baseline (47.60%)

All data that was not 
marked represents 

interictal EEG with no 
content of interest



Pre-processing

AMPSAT (27.41%)

Segments with amplifier 
saturation, mostly at 

the start of the 
recordings where the 
signals data quality is 

being improved



Pre-processing

Artefact (22.96%)

Electrical phenomena 
which distorts the 

neural signal such as 
respiratory, eye 

movement, muscle, or 
environmental sources



Pre-processing

Generalized 
Epileptiform 

Discharge (1.45%)

Spike-and-wave 
discharges which are 

sometimes proceeded 
by polyspikes



Pre-processing

Notched Rhythmic 
Waveforms 

(0.54%)

Benign activity likely a 
result of the patient 
being in a state of 

drowsiness



Pre-processing

Spikes (0.04%)

Events that in isolation 
would be unlikely to be 

used as a diagnostic 
marker



Pre-processing

Binary

Ictal
● Generalised Epileptiform Discharge

Inter-ictal
● Baseline
● Artefact
● Notched Rhythmic Waveforms
● Spikes

Multiclass

Ictal
● Generalised Epileptiform Discharge

Inter-ictal
● Baseline
● Notched Rhythmic Waveforms
● Spikes

Artefact



Feature Extraction

Quantify values or features of the signal (e.g. biomarkers or artefacts)

The data was epoched into window sizes of 2 seconds with a 1 second overlap (most records were sampled at 
256Hz). In each epoch, for each channel, the following features were extracted…

Time Frequency Time-Frequency

Correlation Coefficients Correlation Coefficients Mean

Eigenvalues Eigenvalues Standard Deviation

Median Power Log Sum

Relative Power Mean Absolute

Ratio

To get all these features for the full dataset (11hrs) takes around 6:03 mins on my laptop



Dimension Reduction Principal Component Analysis (PCA)

Dimensionality reduction algorithms remove multicollinearity and retain important 

information by creating new synthetic features through combining features

PCA aims to separate a set of mixed signals into their 
component sources.

PCA aims to find vectors that best explain a data's 
variability by transforming data onto an equal or lower 
dimensional subspace, combining features that are highly 
correlated.

PCA can reduce a model's complexity, run time, and 
potential for overfitting to the training data.



Classification Support Vector Machine (SVM)

SVMs are discriminative algorithms that distinguish 
classes of objects by finding a hyperplane that 
provides the maximum margin of separation from 
classes.

If data can be linearly separated, then a 'hard’ 
margin of separation can be used; whereby a point 
on the edge of a class is used as the support vector 
for the decision boundary.



Classification Support Vector Machine (SVM)

However 'hard’ margins are sensitive to outliers, so often 
a ‘soft’ margin is used to allow for some errors (C).

If classes cannot be linearly separated, the input feature 
space can be projected to higher dimensions to create a 
nonlinear separation boundary



Classification K-Nearest Neighbours (KNN)

KNN is a lazy learner that memorizes training data, rather 
than learning a discriminative function, assigning data 
points to the class with the greatest number of "nearest 
neighbors.

The number of nearest neighbors (k) and a distance 
metric, to measure the distance between samples, need 
to be specified.



Classification Decision Tree

Decision trees split the data based on the 
features that best separates data into the 
class labels.

Data is split until all the samples within 
each node all belong to the same class or a 
maximum depth is reached.



Classification Random Forest (RF)

A RF is an ensemble of multiple decision trees which are averaged together.

A random forest draws a random bootstrap sample of data and features to grow 
individual decision trees on. This process is repeated n times and the prediction of each 
tree is aggregated to assign class labels.



Optimisation and Cross-Validation

A Bayesian optimization method was used to search over classification pipeline 

components and model hyperparameters for each classifier. The search space begins 

with a random combination of components and hyperparameters, which are optimized 

over 1000 iterations.



Optimisation and Cross-Validation

The objective function is used at each iteration to update 

a prior from a history of model configuration and score 

pairs. The probability model P(score|configuration) is 

used to search for the most promising candidates and is 

therefore quicker than evaluating all possible 

combinations (e.g. GridSearch).

There are a few different algorithms for bayesian 

optimisation, such as gaussian processes and 

tree-structured-parzen-estimators.



Optimisation and Cross-Validation Tree of Parzen Estimators (TPE)

Gaussian Mixture Model’s (GMM) or regression models can be 

used for modelling the probability.

For TPE's a prior distribution needs to be defined for the 

hyperparameters, although these can just be uniformly 

distributed if there is little previous guidance.

The first few iterations just perform a random search to build a 

distribution of the best observations for each hyperparameter.

A GMM l(x) is fitted to parameters associated with the smallest 

loss function values, and another GMM g(x) to the remaining 

values to choose a parameter value x that maximizes the ratio 

l(x)/g(x).



Optimisation and Cross-Validation Tree of Parzen Estimators (TPE)

The distributions are modelled using parzen-window density 

estimators so that each sample defines a gaussian distribution 

which can be stacked together and normalised to give a 

probability density function.

The tree structure refers to the fact parameters can have 

tree-structured dependencies; for example, the Gamma 

parameter of a SVM can only be selected if the kernel is chosen to 

be a RBF rather than linear.



Optimisation and Cross-Validation Tree of Parzen Estimators (TPE)



Optimisation and Cross-Validation

Pipeline Step Algorithm Hyperparameter Parameter Space

Feature Selection None - -

SelectFromModel(RF) Max Features randint(1, 541)

Dimension Reduction None - -

PCA Number of Components uniform(0.05, 1.0)

Classification Dummy Classifier - -

KNN Nearest Neighbors randint(1,10)

Algorithm choice(ball tree, kd tree, brute)

p randint(1,10)

Leaf Size normal(m=30, sd=8)

SVM C uniform(0.05, 8)

Kernel choice(linear, rbf)

Gamma uniform(0.005, 2)

RF Number of Estimators normal(m=2000, sd=500)

Criterion choice(Gini, Entropy)

Max Depth choice(None, randint(1, 50))
Min Samples Split uniform(0.01, 1.)

Max Features uniform(0.01, 1.)



Optimisation and Cross-Validation

Pipelines were cross-validated using a 5-fold 
StratifiedKFold so each fold had a similar proportion of 
seizure and non-seizure data to the full data.

Each fold was undersampled to balance the number of 
ictal and interictal data for training.

Separately for each classifier, at each trial of the 
Bayesian optimization training, features could be 
selected using a random forest, extracted using PCA, or 
both.



Optimisation and Cross-Validation Why Undersample?

Question: How can I get 98.55% accuracy using 1 rule/line of code on a 20 minute EEG 

record where a patient has 3 seizures each lasting 5.8 seconds?
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Optimisation and Cross-Validation Why Undersample?

Question: How can I get 98.55% accuracy using 1 rule/line of code on a 20 minute EEG 

record where a patient has 3 seizures each lasting 5.8 seconds?

Answer: Just always predict a patient is never having a seizure

> predictions = [0]*len(patient_record)

(Also I find that weighting classes or up-sampling tends to perform worse as the imbalance is huge in this case)



Performance Evaluation

Patient-specific leave-one-out cross-validation
● Performance is assessed in a manner that is like how the models would be used in 

practice

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21

…

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21



Performance Evaluation

The best pipelines for each classifier (SVM, RF, KNN) on each held-out dataset 
were selected and re-trained on an undersample of the full held-out dataset it 
was previously cross-validated on. This is because during cross-validation it was 

only trained on 4/5
th

 of data.

These models were then also grouped into a soft voting ensembles (SVE’s) for 
each patient.



Training



Training



SVM Hyperparameters on data where P2 was left out (random state = 1)

Training



SVM Hyperparameters on data where P2 was left out (random state = 2)

Training



Training Pipeline Components



Training Feature Selection



Training Feature Selection



Test Results
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General Conclusions

Datasets with lots of artifactual (noisy) data, means there's 
likely to be increased instances of false positives.

Some authors…
…group detection’s together.
…remove artefacts before training and testing models.
…do not consider a detection false if within 1 minute of 
a seizure!



General Conclusions

Features selected by random forests reflect the presentation 
of absence seizures. This may enable…

…a seizure specific EEG channel profile based on the 
focal area of seizures.

…patient specific limited channel EEG for long term 
monitoring based on their unique seizure topography.



General Conclusions

Finding optimal parameters is important…
… for model fit
… to ensure differences between models are not 
because of default/selected parameters



General Conclusions

Model performance tends to be worse on records 
with no seizures present.
● Algorithms could assist with collecting longer EEG 

records.
● Another study found 30% of children who had no 

clinically detected seizures in a standard recording 
procedure had them detected in 1hr EEG recordings.



General Conclusions

Use of Bayesian hyperparameter optimisation
● Authors often do not make it clear how they arrived at 

certain hyperparameters

Most complete descriptions of the models 
performance in raw seconds



General Conclusions

Comparison of Binary and Multiclass models with a 
new dataset marked freely rather than in windowed 
bins

First use of NHS clinic data scans collected during 
diagnostic routine
● They tend to be noisy at the start of the record and while 

they are asking the patient to breathe heavily.



Whats Next?

Larger datasets
● NHS: Increase to 37 Patients (26hrs) with absence seizures
● TUH: 11 Patients (6hrs) with absence seizures
● TUH: 65 Patients (47hrs) with generalised seizures
● CHB: 24 Patients (980hrs) with generalised seizures

Ensemble Models
● Balanced Bagged KNN
● Balanced Random Forest
● Randomly Undersampled Boosted Trees (RUSBoost)
● LightGBM



Whats Next?

Deep learning architectures
● Multilayer Perceptron (MLP)
● Convolutional Neural Network (CNN)
● Recurrent Neural Network

BOHB – Bayesian Optimization and Hyperband

Varying window sizes based on data (Changepoint)



Computing hardware and software
Hardware

Dell XPS 13 9370 laptop

Lancaster High End Computing Cluster

Google Colab (GPU & TPU)

Software

Python 3

● Numpy, Pandas

● PyWavelets, SciPy

● Scikit-learn

● Imbalanced-learn

● Hyperopt, HpBandSter

● LightGBM

● Tensorflow 2.0 (Keras API)

Jupyter Notebooks



GitHub
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