Numerical Simulations of Laser Wakefield�in inhomogeneous Plasmas�
Hayashi Yoshiaki(1), Habara Hideaki(1), Yao-Li Liu(2), Kuramitsu Yasuhiro(1)
(1)Graduate school of engineering, Osaka University
(2)Institute of Atomic and Molecular Sciences, Academia Sinica Taipei
Flying mirror concept
Incident
light
Reflected
light
Pump laser
Laser wakes as a flying mirror
Direction of
wakes propagation
Simulation setup
Similation parameters | |
Simulation code | epoch2d |
(Nx , Ny) | (3072,3072) |
(Δx , Δx) | (9.77 nm, 9.77nm) |
Plasma | Hydrogen plasma |
Particle count | 16 |
Boundary condition | outflow |
Frame | Moveing frame moving with light speed |
Laser parameters | |
Wavelength | 810 nm |
Pulse Width | 23.55 fs |
Spot Size | 7.1 μm |
Intensity | 1019 W/cm2 |
Normalized vector potential | 1.53 |
Gamma | 1.83 |
nc | 1.7 × 1020 cm-3 |
Density profile
L = 1 μm
n0 = 10-2 nc
(1) g = 0.01 μm-1
(2) g = 0.1 μm-1
(1) g = 0.01 μm-1
(2) g = 0.1 μm-1
Method
30 um
c*τ : 240 μm
g = 0.01 μm-1
800 fs
Space
Time
300 fs
c*τ : 90 μm
g = 0.1 μm-1
Space
Time
30 um
c*τ : 240 μm
g = 0
800 fs
Space
Time
300 fs
Space
Time
g = 0.1 μm-1 with focusing laser
c*τ : 90 μm
Laser focal point
Results
g = 0.1 μm-1 with focusing laser
g = 0.1 μm-1
g = 0.01 μm-1
30 um
30 um
30 um
300 fs
Change of wavelength
300 fs
300 fs
The velocity of plasma wakes decreases from superluminal velocity.
It eventually reaches to light speed before the wakes collapse.
g = 0.01 μm-1
g = 0.1 μm-1
Change of velocity
Summary