1 of 23

Central Limit Theorems �and� Stein’s Method for Gaussian Approximations��(Blueprint for 2023 NCTS USRP Group 1)

Gi-Ren Liu (National Cheng Kung University)

Yuan-Chung Sheu (National Yang Ming Chiao Tung University)

2 of 23

Galton Board

3 of 23

A Simplified Model for the Galton Board

 

4 of 23

 

 

 

 

5 of 23

 

 

6 of 23

 

Convergence in distribution

7 of 23

 

8 of 23

 

9 of 23

Applications of CLT: Opinion Polls

  •  

10 of 23

  •  

11 of 23

 

12 of 23

  •  

13 of 23

 

14 of 23

  •  

15 of 23

  •  

16 of 23

  •  

17 of 23

  •  

 

18 of 23

 

 

19 of 23

Locally independent random sequences

  •  

 

20 of 23

2023 NCTS USRP Schedule (July 3 – August 11)�Central Limit Theorems �and� Stein’s Method for Gaussian Approximations �

  • Week 1. Central Limit Theorems [1]
  • Week 2. Stein’s Method for One-dimensional Normal Approximation [2,3]
  • Week 3. Multidimensional Stein’s Method [2,4]
  • Week 4. Non-Gaussian Approximation [4,5]
  • Week 5. Applications of Gaussian and non-Gaussian Approximation [6,7]
  • Week 6. Open Problem Discussion [6,7,8,9]

21 of 23

Reference

[1] Le Gall, J. F., 2022. Measure Theory, Probability, and Stochastic Processes. Vol. 295. Springer Nature.

[2] Nourdin, I. and Peccati, G., 2012. Normal approximations with Malliavin calculus: from Stein's method to universality (Vol. 192). Cambridge University Press.

[3] Chatterjee, Sourav. "A short survey of Stein's method." arXiv preprint arXiv:1404.1392 (2014).

[4] Chen, L.H., Goldstein, L. and Shao, Q.M., 2011. Normal approximation by Stein's method (Vol. 2). Berlin: Springer.

[5] Azmoodeh, E., Eichelsbacher, P. and Thäle, C., 2022. Optimal Variance–Gamma approximation on the second Wiener chaos. Journal of Functional Analysis282(11), p.109450.

22 of 23

[6] Hairer, M. and Shen, H., (2017). A central limit theorem for the KPZ equation. The Annals of Probability45(6B), pp.4167-4221.

[7]  Liu G. R., Sheu Y. C. and Wu H. T., (2023). Central and non-central limit theorems arising from the scattering transform and its neural activation generalization. SIAM Journal on Mathematical Analysis  55(2), 1170-1213.

[8] Azmoodeh, E., Eichelsbacher, P. and Thäle, C., (2022). Optimal Variance–Gamma approximation on the second Wiener chaos. Journal of Functional Analysis282(11), p.109450.

[9] Rinott, Y. and Rotar, V. (2003). On edgeworth expansions for dependency-neighborhoods chain structures and stein’s method. Probability Theory and Related Fields, 126(4):528– 570.

23 of 23

Thank You for Your Attention