
Function-Oriented Software
Design

1

Introduction

•During the design process
high-level functions are
successively decomposed into
more detailed functions.
•Finally the detailed functions are
mapped to a module structure.

2

Introduction
•Successive decomposition of
high-level functions into more
detailed functions.
•Technically known as top-down
decomposition.

3

Introduction

SA/SD methodology has essential
features of several important
function-oriented design
methodologies-if you need to use
any specific design methodology
later on, you can do so easily with
small additional effort.

4

Overview of SA/SD Methodology

•SA/SD methodology consists of two distinct
activities:
–Structured Analysis (SA)
–Structured Design (SD)
•During structured analysis:
–functional decomposition takes place.
•During structured design:
–module structure is formalized.

5

Functional decomposition

•Each function is analysed
hierarchically decomposed into
more detailed functions.
•Simultaneous decomposition of
high-level data into more detailed
data.

6

Structured analysis

•Transforms a textual problem
description into a graphic model.
It is done using data flow diagrams
(DFDs).
•DFDs graphically represent the
results of structured analysis.

7

Structured design

•All the functions represented in
the DFD: mapped to a module
structure.
•The module structure: also called
as the software architecture:

8

Detailed Design

•Software architecture is refined
through detailed design.
•Detailed design can be directly
implemented using a conventional
programming language.

9

Structured Analysis vs. Structured Design

•Purpose of structured analysis:
capture the detailed structure of the
system as the user views it.
•Purpose of structured design: arrive
at a form that is suitable for
implementation in some programming
language.

10

Structured Analysis
• Based on principles of
• Top-down decomposition approach.
• Divide and conquer principle: Each function is

considered individually (i.e. isolated from other
functions).
• Decompose functions totally disregarding what

happens in other functions.
• Graphical representation of results using data flow

diagrams (or bubble charts).

11

Data flow diagram

•DFD is a hierarchical graphical
model:
–shows the different functions (or

processes) of the system and

–data interchange among the
processes.

12

DFD Concepts

•It is useful to consider each
function as a processing station:
–each function consumes some input

data and

–produces some output data.

13

Data Flow Model of a Car Assembly Unit

14

 Fit
Engine

Paint and
 Test

 Fit
Wheels

 Fit
Doors

Chassis Store

 Door Store

 Wheel Store

Engine Store

Car

Partly
Assembled
Car

Assembled
Car

Chassis with
Engine

Data Flow Diagrams (DFDs)

• Primitive Symbols Used for Constructing DFDs:

15

External Entity Symbol

•Represented by a rectangle

•External entities are real
physical entities:
–input data to the system or

–consume data produced by the system.

–Sometimes external entities are called
terminator, source, or sink.

16

Librarian

Function Symbol

• A function such as “search-book” is represented using a
circle:

– This symbol is called a
process or bubble or transform.

– Bubbles are annotated with corresponding function names.

– Functions represent some activity:

• function names should be verbs.

17

search-b
ook

Data Flow Symbol

•A directed arc or line.
–represents data flow in the direction

of the arrow.

–Data flow symbols are annotated
with names of data they carry.

18

book-name

Data Store Symbol

•Represents a logical file:
–A logical file can be:
• a data structure
• a physical file on disk.

–Each data store is connected to a
process:
•by means of a data flow symbol.

19

book-details

Data Store Symbol

• Direction of data flow arrow:

– shows whether data is being read
from or written into it.

• An arrow into or out of a data store:

– implicitly represents the entire data of the data store

– arrows connecting to a data store need not be annotated with
any data name.

20

find-book

Books

Synchronous operation

• If two bubbles are directly connected by a data flow arrow:

– they are synchronous

21

Data-items

Read-num
bers
0.1

Validate-n
umbers

0.2 Valid
number

number

Asynchronous operation

• If two bubbles are connected via a data store:

– they are not synchronous.

22

Data-items

Read-num
bers
0.1

Validate-n
umbers

0.2
Valid
number

numbers

How is Structured Analysis Performed?

•Initially represent the software at the
most abstract level:
–called the context diagram.

–the entire system is represented as a
single bubble,

–this bubble is labelled according to the

main function of the system.

23

Tic-tac-toe: Context Diagram

24

Human Player

Tic-tac-toe
softwaredisplay

move

Context Diagram

•A context diagram shows:

–data input to the system,

–output data generated by the
system,

–external entities.

25

Context Diagram

•Context diagram captures:
–various entities external to the system and

interacting with it.

–data flow occurring between the system
and the external entities.

•The context diagram is also called as
the level 0 DFD.

26

Level 1 DFD

•Examine the SRS document:
–Represent each high-level function as a

bubble.

–Represent data input to every high-level
function.

–Represent data output from every
high-level function.

27

Higher level DFDs

• Each high-level function is separately decomposed into
subfunctions:

– identify the subfunctions of the function

– identify the data input to each subfunction

– identify the data output from each subfunction

• These are represented as DFDs.

28

Decomposition

•Decomposition of a bubble:

–also called factoring or exploding.

•Each bubble is decomposed to
– between 3 to 7 bubbles.

29

Decomposition

•Too few bubbles make
decomposition superfluous:
–if a bubble is decomposed to just one

or two bubbles:
•then this decomposition is redundant.

30

Decomposition

•Too many bubbles:

–more than 7 bubbles at any level
of a DFD

–make the DFD model hard to
understand.

31

Decompose how long?

•Decomposition of a bubble
should be carried on until:

–a level at which the function of
the bubble can be described using
a simple algorithm.

32

Example 1: RMS Calculating Software

•Consider a software called RMS
calculating software:
–reads three integers in the range of -1000

and +1000
–finds out the root mean square (rms) of

the three input numbers
–displays the result.

33

Example 1: RMS Calculating Software

•The context diagram is simple
to develop:

–The system accepts 3 integers
from the user

–returns the result to him.

34

 Example 1: RMS Calculating Software

35

Compute-
RMS

0

User

Data-items

result

Context Diagram

 Example 1: RMS Calculating Software

•From a cursory analysis of the
problem description:

–we can see that the system needs
to perform several things.

36

 Example 1: RMS Calculating Software

•Accept input numbers from the
user:
–validate the numbers,

–calculate the root mean square of the
input numbers

–display the result.

37

 Example 1: RMS Calculating Software(Level-1)

38

Data-items

result

Read-num
bers
0.1

Validate-n
umbers

0.2

Compute-
rms
0.3

Display
0.4

RMS

numbers

Valid
-numbers

error

Example 1: RMS Calculating
Software(Level-2)

39

Calculate-sq
uared-sum

0.3.1
Calculate-m

ean
0.3.2

Calculate-ro
ot

0.3.3

Valid
-numbers

Squared-s
um

RMS

Mean-sq
uare

Example: RMS Calculating
Software(Level-3)

40

Square
0.3.1.1

Square
0.3.1.2

Square
0.3.1.3

Sum
0.3.1.4

a b
c

asq
bsq

csq

Squared-sum

Example: RMS Calculating Software

•Decomposition is never carried on
up to basic instruction level:
–a bubble is not decomposed any

further:
•if it can be represented by a simple set
of instructions.

41

Data Dictionary

• A DFD is always accompanied by a data dictionary.

• A data dictionary lists all data items appearing in
a DFD:
– definition of all composite data items in terms of their

component data items.

– all data names along with the purpose of data items.

• For example, a data dictionary entry may be:
– grossPay = regularPay+overtimePay

42

Importance of Data Dictionary

• Provides all engineers in a project with standard
terminology for all data:

– A consistent vocabulary for data is very important

– different engineers tend to use different terms to refer to the
same data,

• causes unnecessary confusion.

43

Importance of Data Dictionary

• Data dictionary provides the definition of different data:
– in terms of their component elements.

• For large systems,

– the data dictionary grows rapidly in size and complexity.

– Typical projects can have thousands of data dictionary entries.

– It is extremely difficult to maintain such a dictionary manually.

44

Data Dictionary

•CASE (Computer Aided Software
Engineering) tools come handy:
–CASE tools capture the data items

appearing in a DFD automatically to
generate the data dictionary.

45

Data Dictionary

• CASE tools support queries:
– about definition and usage of data items.

• For example, queries may be made to find:
– which data item affects which processes,

– a process affects which data items,

– the definition and usage of specific data items, etc.

• Query handling is facilitated:
– if data dictionary is stored in a relational database

management system (RDBMS).

46

Data Definition

• Composite data are defined in terms of primitive
data items using following operators:

• +: denotes composition of data items, e.g
– a+b represents data a and b.

• [,,,]: represents selection,
– i.e. any one of the data items listed inside the square

bracket can occur.

– For example, [a,b] represents either a occurs or b
occurs.

47

Data Definition

• (): contents inside the bracket represent optional data

– which may or may not appear.

– a+(b) represents either a or a+b occurs.

• {}: represents iterative data definition,

– e.g. {name}5 represents five name data.

48

Data Definition

• {name}* represents

– zero or more instances of name data.

• = represents equivalence,

– e.g. a=b+c means that a represents b and c.

• * *: Anything appearing within * * is considered as
comment.

49

Data dictionary for RMS Software

• numbers=valid-numbers=a+b+c

• a:integer * input number *

• b:integer * input number *

• c:integer * input number *

• asq:integer

• bsq:integer

• csq:integer

• squared-sum: integer

• Result=[RMS,error]

• RMS: integer * root mean square value*

• error:string * error message*

50

Balancing a DFD

• Data flowing into or out of a bubble:
– must match the data flows at the next level of DFD.

– This is known as balancing a DFD

• In the level 1 of the DFD,
– data item c flows into the bubble P3 and the data item d

and e flow out.

• In the next level, bubble P3 is decomposed.
– The decomposition is balanced as data item c flows into

the level 2 diagram and d and e flow out.

51

Balancing a DFD

52

a

b

e
d

c
c

d
e

c1
d1

e1Level 1

Level 2

Numbering of Bubbles:

• Number the bubbles in a DFD:
– numbers help in uniquely identifying any bubble from its

bubble number.

• The bubble at context level:
– assigned number 0.

• Bubbles at level 1:
– numbered 0.1, 0.2, 0.3, etc

• When a bubble numbered x is decomposed,
– its children bubble are numbered x.1, x.2, x.3, etc.

53

Example 2: Tic-Tac-Toe Computer Game

• A human player and the computer make alternate
moves on a 3 3 square.

• A move consists of marking a previously unmarked
square.

• The user inputs a number between 1 and 9 to
mark a square

• Whoever is first to place three consecutive marks
along a straight line (i.e., along a row, column, or
diagonal) on the square wins.

54

Example: Tic-Tac-Toe Computer Game

• As soon as either of the human player or the
computer wins,
– a message announcing the winner should be displayed.

• If neither player manages to get three consecutive
marks along a straight line,
– and all the squares on the board are filled up,

– then the game is drawn.

• The computer always tries to win a game.

55

Context Diagram for Example

56

Human Player

Tic-tac-toe
software

0display

move

Level 1 DFD

57

board

Display-
board

0.1

Check-w
inner

0.4

Validate-
move

0.2

Play-mo
ve
0.3

move result

game

Data dictionary

• Display=game + result

• move = integer

• board = {integer}9

• game = {integer}9

• result=string

58

Key Points :
•During structured design,
–the DFD representation is transformed to

a structure chart representation.

•DFDs are very popular:
–because it is a very simple technique.

59

Key Points :

•A DFD model:
–difficult to implement using a

programming language:

–structure chart representation can be
easily implemented using a
programming language.

60

