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Introduction 

•During the design process 
high-level functions are 
successively decomposed into 
more detailed functions.
•Finally the detailed functions are 
mapped to a module structure. 
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Introduction 
•Successive decomposition of 
high-level functions into more 
detailed functions.
•Technically known as top-down 
decomposition.
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Introduction 

SA/SD  methodology has essential 
features of several important 
function-oriented design 
methodologies-if you need to use 
any specific design methodology 
later on, you can do so easily with 
small additional effort.
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Overview of SA/SD Methodology

•SA/SD methodology consists of two distinct 
activities: 
–Structured Analysis (SA) 
–Structured Design (SD) 
•During structured analysis:
–functional decomposition takes place.
•During structured design:
–module structure is formalized.
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Functional decomposition

•Each function is analysed 
hierarchically decomposed into 
more detailed functions.
•Simultaneous decomposition of 
high-level data into more detailed 
data.

6



Structured analysis

•Transforms a textual problem 
description into a graphic model. 
It is done using data flow diagrams 
(DFDs).
•DFDs graphically represent the 
results of structured analysis.

7



Structured design

•All the functions represented in 
the DFD: mapped to a module 
structure. 
•The module structure: also called 
as the  software architecture:
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Detailed Design

•Software architecture is refined 
through detailed design.
•Detailed design can be directly 
implemented using a conventional 
programming language.
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Structured Analysis vs. Structured Design

•Purpose of structured analysis: 
capture the detailed structure of the 
system as the user views it. 
•Purpose of structured design: arrive 
at a form that is suitable for 
implementation in some programming 
language. 

10



Structured Analysis
• Based on principles of
• Top-down decomposition approach.
• Divide and conquer principle: Each function is 

considered individually (i.e. isolated from other 
functions).
• Decompose functions totally disregarding what 

happens in other functions.
• Graphical representation of results using data flow 

diagrams (or bubble charts).
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Data flow diagram

•DFD  is  a hierarchical graphical 
model:
–shows the different functions (or 

processes) of the system and

–data interchange among the 
processes.  
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DFD Concepts

•It is useful to consider each 
function as a processing station: 
–each function consumes some input 

data and 

–produces some output data.
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Data Flow Model of a Car Assembly Unit
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Data Flow Diagrams (DFDs)

• Primitive Symbols Used for Constructing DFDs:
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External Entity Symbol

•Represented by a rectangle

•External entities are real 
physical entities:
–input data to the system or

–consume data produced by the system. 

–Sometimes external entities are called 
terminator, source, or sink.
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Function Symbol

• A function such as “search-book” is represented using a 
circle:

– This  symbol is called a 
process or  bubble or transform.  

– Bubbles are annotated with corresponding function names.

– Functions represent some activity: 

• function names should be verbs.
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Data Flow Symbol

•A directed arc or line. 
–represents data flow in the direction 

of the arrow. 

–Data flow symbols are annotated 
with names of data they carry.
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Data Store Symbol

•Represents a logical file:
–A logical file can be:
• a data structure 
• a physical file on disk. 

–Each data store is connected to a 
process: 
•by means of a data flow symbol. 
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Data Store Symbol

• Direction of data flow arrow:

– shows whether data is being read
from or written into it. 

• An arrow  into or out of a data store:

– implicitly represents the entire data of the data store

– arrows connecting to a data store need not be annotated with 
any data name.
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Synchronous operation

• If two bubbles are directly connected by a data flow arrow:

– they are synchronous
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Asynchronous operation

• If two bubbles are connected via a data store: 

– they are not synchronous.
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How is Structured Analysis Performed?

•Initially represent the  software at the 
most abstract level:
–called the context diagram.

–the entire system is represented as a 
single bubble,

–this bubble is labelled according to the 

main function of the system. 
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Tic-tac-toe: Context Diagram
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Context Diagram

•A context diagram shows:

–data input to the system, 

–output data generated by the 
system,

–external entities.
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Context Diagram

•Context diagram captures:
–various entities external to the system and 

interacting with it.

–data flow occurring between the system 
and the external entities.

•The context diagram is also called as 
the level 0 DFD.
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Level 1 DFD

•Examine the SRS document:
–Represent each high-level function as a 

bubble.

–Represent data input to every high-level 
function.

–Represent data output from every 
high-level  function.
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Higher level DFDs

• Each high-level function is  separately decomposed into 
subfunctions:

– identify the subfunctions of the function

– identify the data input to each subfunction

– identify the data output from each subfunction 

• These are represented as DFDs.
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Decomposition

•Decomposition of a bubble:

–also called  factoring or  exploding.

•Each bubble is decomposed to
– between 3 to 7 bubbles.
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Decomposition

•Too few bubbles make 
decomposition superfluous:
–if a bubble is decomposed to just one 

or two bubbles: 
•then this decomposition is redundant.
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Decomposition

•Too many bubbles: 

–more than 7 bubbles at any level 
of a DFD 

–make the DFD model hard to 
understand.
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Decompose how long?

•Decomposition of a bubble 
should be carried on until:

–a level at which the function of 
the bubble can be described using 
a simple algorithm.
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Example 1: RMS Calculating Software

•Consider a software called RMS 
calculating  software: 
–reads three integers in the range of -1000 

and +1000 
–finds out the root mean square (rms) of  

the three input numbers 
–displays the result.
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Example 1: RMS Calculating Software

•The context diagram is simple 
to develop: 

–The system accepts 3 integers 
from the user

–returns the result to him.
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 Example 1: RMS Calculating Software
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 Example 1: RMS Calculating Software

•From a cursory analysis of the 
problem description: 

–we can see that the system needs 
to perform several things.
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 Example 1: RMS Calculating Software

•Accept input numbers from the 
user: 
–validate the numbers,

–calculate the root mean square of the 
input numbers 

–display the result.
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 Example 1: RMS Calculating Software(Level-1)
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Example 1: RMS Calculating 
Software(Level-2)
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Example: RMS Calculating 
Software(Level-3)
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Example: RMS Calculating Software

•Decomposition is never carried on 
up to basic instruction level:
–a bubble is not decomposed any 

further: 
•if it can be represented by a simple set 
of instructions.
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Data Dictionary

• A DFD is always accompanied by a data dictionary.

• A data dictionary  lists all data items appearing in 
a DFD: 
– definition of all composite data items in terms of their 

component data items. 

– all data names along with the purpose of  data items.

• For example, a data dictionary entry may be: 
– grossPay = regularPay+overtimePay
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Importance of Data Dictionary

• Provides all engineers in a project with standard 
terminology for all data: 

– A consistent vocabulary for data is very important

– different engineers tend to use different terms to refer to the 
same data, 

• causes unnecessary confusion.
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Importance of Data Dictionary

• Data dictionary provides the definition of different data:
– in terms of their component elements.

• For large systems,

– the data dictionary grows rapidly in size and complexity.

– Typical projects can have thousands of data dictionary entries.

– It is extremely difficult to maintain such a dictionary manually. 
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Data Dictionary

•CASE (Computer Aided Software 
Engineering) tools come handy:
–CASE tools capture the data items 

appearing in a DFD automatically to 
generate the data dictionary.
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Data Dictionary

• CASE tools support  queries:
– about definition and usage of data items. 

• For example, queries may be made to find: 
– which data item affects which processes,  

– a process affects which data items, 

– the definition and usage of specific data items, etc.  

• Query handling is facilitated:
–  if data dictionary is stored in a relational database 

management system (RDBMS).
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Data Definition

• Composite data are defined in terms of primitive 
data items using following operators:

•  +: denotes composition of data items, e.g  
– a+b represents data a and b.

• [,,,]: represents selection, 
– i.e. any one of the data items listed inside the square 

bracket can occur. 

– For example, [a,b] represents either  a occurs or  b 
occurs.
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Data Definition

• ( ): contents inside the bracket represent optional data 

– which may or may not appear. 

– a+(b) represents either  a or  a+b occurs.

•  {}: represents iterative data definition, 

– e.g. {name}5 represents five name data.
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Data Definition

• {name}* represents

–  zero or more instances of name data.

• = represents equivalence, 

– e.g.  a=b+c means that a represents  b and  c.

•   *   *: Anything appearing within *    * is considered as 
comment.
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Data dictionary for RMS Software

• numbers=valid-numbers=a+b+c

• a:integer             * input number *

• b:integer             * input number *

• c:integer              * input number *

• asq:integer

• bsq:integer

• csq:integer

• squared-sum: integer

• Result=[RMS,error]

• RMS: integer           * root mean square value*

• error:string             * error message*
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Balancing a DFD

• Data flowing into or out of a bubble:
– must match the data flows at the next level of DFD. 

– This is known as  balancing a DFD 

• In the level 1 of the DFD, 
– data item c flows into the bubble P3 and the data item  d 

and e flow out. 

• In the next level, bubble P3 is decomposed. 
– The decomposition is balanced as data item c flows into 

the level 2 diagram and d and e flow out.
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Balancing a DFD
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Numbering of Bubbles:

• Number the bubbles in a DFD:
– numbers help in uniquely identifying any bubble from its 

bubble number. 

• The bubble at context level:
– assigned number 0. 

• Bubbles at level 1:
– numbered 0.1, 0.2, 0.3, etc  

• When a bubble numbered x is decomposed, 
– its children bubble are numbered x.1, x.2, x.3, etc.
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Example 2: Tic-Tac-Toe Computer Game

• A human player and the computer make alternate 
moves on a 3 3 square.

• A move consists of marking a previously unmarked 
square. 

• The user inputs a number between  1 and 9 to 
mark a square

• Whoever is  first to place three consecutive marks 
along a straight line (i.e., along a row, column, or 
diagonal) on the square wins.
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Example: Tic-Tac-Toe Computer Game

• As soon as either of the human player or the 
computer wins, 
– a message announcing the winner should be displayed.

• If neither player manages to get three consecutive 
marks along a straight line, 
– and all the squares on the board are filled up, 

– then the game is drawn. 

• The computer always tries to win a game. 
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Context Diagram for Example
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Level 1 DFD
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Data dictionary

• Display=game + result

• move = integer

• board = {integer}9

• game = {integer}9

• result=string
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Key Points :
•During structured design, 
–the DFD representation is transformed to 

a structure chart representation. 

•DFDs are very popular:
–because it is a very simple technique.
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Key Points :

•A DFD model: 
–difficult to implement using a  

programming language:

–structure chart representation can be 
easily implemented using a 
programming language.
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