Function-Oriented Software
Design

Introduction

*During the design process
high-level functions are
successively decomposed into
more detailed functions.

*Finally the detailed functions are
mapped to a module structure.

*Successive decomposition of
high-level functions into more
detailed functions.

*Technically known as top-down
decomposition.

Introduction g =

SA/SD methodology has essential
features of several important
function-oriented design
methodologies-if you need to use
any specific design methodology
later on, you can do so easily with
small additional effort.

Overview of SA/SD Methodology_ 4

Slola

b E——
'

*SA/SD methodology consists of two distinct
activities:
—Structured Analysis (SA)
—Structured Design (SD)
*During structured analysis:
—functional decomposition takes place.
*During structured design:
—module structure is formalized.

Functional decomposition

*Each function is analysed
hierarchically decomposed into
more detailed functions.

*Simultaneous decomposition of
high-level data into more detailed
data.

Structured analysis gz

Slicla

*Transforms a textual problem
description into a graphic model.
It IS done using data flow diagrams
(DEDs).

*DEDs graphically represent the
results of structured analysis.

Structured design

*All the functions represented in
the DFD: mapped to a module
structure.

T’ he module structure: also called
as the software architecture:

Detailed Design

eSoftware architecture is refined
through detailed design.

*Detailed design can be directly
implemented using a conventional
programming language.

Structured Analysis vs. Structured Design Z. [E

Shlm

W =

*Purpose of structured analysis:
capture the detailed structure of the
system as the user views it.

*Purpose of structured design: arrive
at a form that is suitable for

implementation in some programming
language.

Structured Analysis
* Based on principles of
* Top-down decomposition approach.

* Divide and conquer principle: Each function is
considered individually (i.e. isolated from other
functions).

* Decompose functions totally disregarding what
happens in other functions.

* Graphical representation of results using data flow
diagrams (or bubble charts).

OSSN L
i §

Slola

Data flow diagram /G =
A Pl

*DFD is a hierarchical graphical
model:

—shows the different functions (or
processes) of the system and

—data interchange among the
processes.

DFD Concepts oY

*It is useful to consider each
function as a processing station:

—each function consumes some input
data and

—produces some output data.

Data Flow Model of a Car Assembl

Y
<
>
Q

\
\~

Engine Store Door Store

Chassis with / Partly
Engine Assembled
Car

Assembled
Car

Chassis Store Wheel Store

Data Flow Diagrams (DFDs)

* Primitive Symbols Used for Constructing DFDs:

External Entity Symbol gz =
*Represented by a rectangle
*External entities are real |Librarian ‘

physical entities:
—input data to the system or
—consume data produced by the system.

—Sometimes external entities are called
terminator, source, or sink.

Function Symbol

* A function such as “search-book” is represented using a
circle:

— This symbol is called a
process or bubble or transform.

— Bubbles are annotated with corresponding functio

— Functions represent some activity:

e function names should be verbs.

(S

\

Data Flow Symbol 77 E

Shlm

1 ! ¢

*A directed arc or line.

book-name

-
—represents data flow in the direction
of the arrow.

—Data flow symbols are annotated
with names of data they carry.

Data Store Symbol 77 E

Slola

*Represents a logical file:

—A logical file can be:

* a data structure

* a physical file on disk.
—Each data store is connected to a

process.
*by means of a data flow symbol.

00K-dctalls

Data Store Symbol

e Direction of data flow arrow:

find-book
— shows whether data is being read

from or written into it.

* An arrow into or out of a data store: "%

— implicitly represents the entire data of the data store

— arrows connecting to a data store need not be annotated with
any data name.

5'-_
7

* If two bubbles are directly connected by a data flow arrow:

\¢

Synchronous operation ‘ L]

— they are synchronous

Asynchronous operation

* If two bubbles are connected via a data store:

— they are not synchronous.

numbers

Data-items

) -
'

*|nitially represent the software at the
most abstract level:

—called the context diagram.

How is Structured Analysis Performedgy

—the entire system is represented as a
single bubble,

—this bubble is labelled according to the
main function of the system.

Tic-tac-toe: Context Diagram

Tic-tac-toe

display software

Human Player

Context Diagram

il

*A context diagram shows:
—data input to the system,

—output data generated by the
system,

—external entities.

Context Diagram

Slicla

*Context diagram captures:

—various entities external to the system and
interacting with it.

—data flow occurring between the system
and the external entities.

*The context diagram is also called as
the level 0 DED.

Level 1 DFD

eExamine the SRS document:

—Represent each high-level function as a
bubble.

—Represent data input to every high-level
function.

Sl

—Represent data output from every
high-level function.

L

Higher level DFDs

.: U
* Each high-level function is separately decomposed into
subfunctions:

et
2N

Shlm

— identify the subfunctions of the function
— identify the data input to each subfunction

— identify the data output from each subfunction

* These are represented as DFDs.

Decomposition

Sl

Decomposition of a bubble:
—also called factoring or exploding.

*Each bubble is decomposed to
— between 3 to 7 bubbles.

Decomposition

Slicla

*Too few bubbles make
decomposition superfluous:

—if a bubble is decomposed to just one
or two bubbles:

*then this decomposition is redundant.

Decomposition

il

*Too many bubbles:

—more than 7 bubbles at any level
of a DFD

—make the DFD model hard to
understand.

Decompose how long?

Slicla

Decomposition of a bubble
should be carried on until:
—a level at which the function of

the bubble can be described using
a simple algorithm.

Example 1: RMS Calculating Softwa{r__}{,

Slicla

eConsider a software called RMS

calculating software:

—reads three integers in the range of -1000
and +1000

—finds out the root mean square (rms) of
the three input numbers

—displays the result.

Example 1: RMS Calculating Softwa{r__}{,

Slicla

*The context diagram is simple
to develop:

—The system accepts 3 integers
from the user

—returns the result to him.

Data-items

User Gsult

Context Diagram

Example 1: RMS Calculating Softwag,

Slicla

*From a cursory analysis of the
problem description:

—we can see that the system needs
to perform several things.

Example 1: RMS Calculating Softwa(,

Slicla

— .

*Accept input numbers from the
user:

—validate the numbers,

—calculate the root mean square of the
input numbers

—display the result.

Example 1: RMS Calculating Software(Leyél=

e
|
(& {
-

\o
\S

\

Data-items

numbers

Example 1: RMS Calculating

K
&
»
g

alculate-
ean

Example: RMS Calculating Softwagg. &

Decomposition is never carried on
up to basic instruction level:

—a bubble is not decomposed any
further:

*if it can be represented by a simple set
of instructions.

Data Dictionary @&

* A DFD is always accompanied by a data dictionary.
* A data dictionary lists all data items appearing in

a DFD:

— definition of all composite data items in terms of their
component data items.

— all data names along with the purpose of data items.

* For example, a data dictionary entry may be:
— grossPay = regularPay+overtimePay

Importance of Data Dictiongy

* Provides all engineers in a project with standard
terminology for all data:
— A consistent vocabulary for data is very important

— different engineers tend to use different terms to refer to the
same data,

¢ causes unnecessary confusion.

Importance of Data Dictiong

* Data dictionary provides the definition of different data:
— in terms of their component elements.

* For large systems,
— the data dictionary grows rapidly in size and complexity.
— Typical projects can have thousands of data dictionary entries.
— It is extremely difficult to maintain such a dictionary manually.

[] [] s e .
Data chtlonary . B

*CASE (Computer Aided Software
Engineering) tools come handy:
—CASE tools capture the data items

appearing in a DFD automatically to
generate the data dictionary.

Data Dictionary g !

* CASE tools support queries:
— about definition and usage of data items.

* For example, queries may be made to find:
— which data item affects which processes,
— a process affects which data items,
— the definition and usage of specific data items, etc.

* Query handling is facilitated:

— if data dictionary is stored in a relational database
management system (RDBMS).

Data Definition

Sl

* Composite data are defined in terms of primitive
data items using following operators:

* +: denotes composition of data items, e.g
— a+b represents data a and b.

*[,,,]: represents selection,

—i.e. any one of the data items listed inside the square
bracket can occur.

— For example, [a,b] represents either a occursor b
occurs.

Data Definition

* (): contents inside the bracket represent optional data
— which may or may not appear.

— a+(b) represents either a or a+b occurs.

* {}: represents iterative data definition,

— e.g. {name}5 represents five name data.

Data Definition

* {name}* represents

— zero or more instances of name data.

e = represents equivalence,

— e.g. a=b+c means that a represents b and c.

e * *: Anything appearing within * * is considered as
comment.

Data dictionary for RMS Software {5 b

e numbers=valid-numbers=a+b+c

* adinteger * input number *
* b:integer * input number *
e c:integer * input number *

* asq:integer

* bsq:integer

* csq:integer

* squared-sum: integer

* Result=[RMS,error]

* RMS: integer * root mean square value*
* error:string * error message®

Balancing a DFD

Sliclm

* Data flowing into or out of a bubble:
— must match the data flows at the next level of DFD.
— This is known as balancing a DFD

* In the level 1 of the DFD,

— data item c flows into the bubble P3 and the data item d
and e flow out.

* In the next level, bubble P3 is decomposed.

— The decomposition is balanced as data item c flows into
the level 2 diagram and d and e flow out.

Numbering of Bubbles:

Sliclm

e Number the bubbles in a DFD:

— numbers help in uniquely identifying any bubble from its
bubble number.

* The bubble at context level:
— assigned number 0.

* Bubbles at level 1:
— numbered 0.1, 0.2, 0.3, etc

* When a bubble numbered x is decomposed,
— its children bubble are numbered x.1, x.2, x.3, etc.

Example 2: Tic-Tac-Toe Computer Gg

* A human player and the computer make alternate
moves on a 3 3 square.

* A move consists of marking a previously unmarked
square.

* The user inputs a number between 1 and 9 to
mark a square

* Whoever is first to place three consecutive marks
along a straight line (i.e., along a row, column, or
diagonal) on the square wins.

Example: Tic-Tac-Toe Computer G)

* As soon as either of the human player or the
computer wins,
— a message announcing the winner should be displayed.
* If neither player manages to get three consecutive
marks along a straight line,
— and all the squares on the board are filled up,
— then the game is drawn.

* The computer always tries to win a game.

Context Diagram for Example

Tic-tac-toe
software

display 0

Human Player

Level 1 DFD

A

Data dictionary iz

* Display=game + result
°* move = integer

e board = {integer}9

e game = {integer}9

* result=string

Key Points :

Sl

*During structured design,

—the DFD representation is transformed to
a structure chart representation.

*DFDs are very popular:
—because it is a very simple technique.

Key Points :

il

A DFD model:

—difficult to implement using a
programming language:
—structure chart representation can be

easily implemented using a
programming language.

