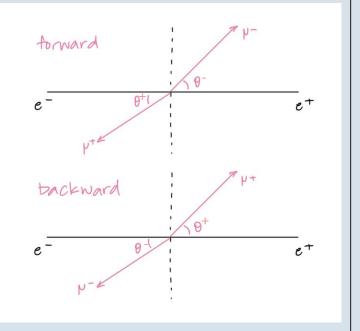

Forward Backward Asymmetry

Sofia Lara, Brenda Chow

Simulation Data

- Z boson decay into leptons
 - Signal: $Z \rightarrow \mu^+ \mu^-$
 - Background: $Z \rightarrow \tau^+ \tau^-$ and $Z \rightarrow \mu^+ \mu^-(\gamma)$
- Used Whizard, Pythia, and KKMC to generate 10 million events
- Cross section = 1462.08 pb (Pythia), 1717.85 pb (Whizard), 1515.56 (KKMC)
- Event generation is done with nominal FCC parameters for the Beam Energy Spread (0.132%) and Bunch dimensions (4.38/15.4 mm)
- Detector simulation done using IDEA detector with Delphes (Winter2023 campaign)
- Goal: measure the forward-backward asymmetry!

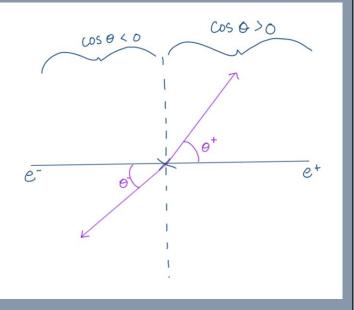


What is Forward-Backward Asymmetry?

- Forward-backward Asymmetry (A_{FB}):

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

- σ_F : cross section for events with the fermion scattered into the hemisphere which is forward with respect to the e⁻ beam direction
- $\sigma_{\rm B}$: cross section in the backward hemisphere


What is Forward-Backward Asymmetry?

- Alternatively determined using the scattering angle in the rest system

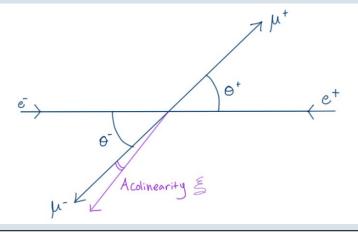
 $cos(\theta_c) = \frac{sin(\theta_+ - \theta_-)}{sin(\theta_+) + sin(\theta_-)}$

- Minimises sensitivity to photon emission, assuming zero initial state radiation

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \sigma(s) \cdot \left\{ \frac{3}{8} (1 + \cos^2\theta_c) + A_{FB}(s) \cdot \cos\theta_c) \right\}$$

1111

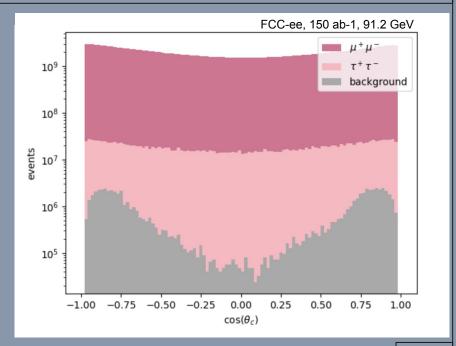
Event Selection


Analysis is based off the L3 collaboration paper

- 1. Only 2 muons
- 2. Max muon momentum (p_{max})> 0.6 Eb
- 3. At least 1 muon with transverse momentum $(p_T) > 3 \text{ GeV}$
- 4. Differential cross section in the angular region $|\cos(\theta)| < 0.9$
- 5. Acolinearity angle (ξ) <15°

Acolinearity Angle

- Acolinearity means that the scattered muons are perfectly back to back (collinear, but opposite directions)
- If the acolinearity angle $(\xi) > 0^\circ$, the muons are not acolinear!
- Important because acolinear muons means the Z boson was at rest during the decay, and thus conservation of momentum can be applied



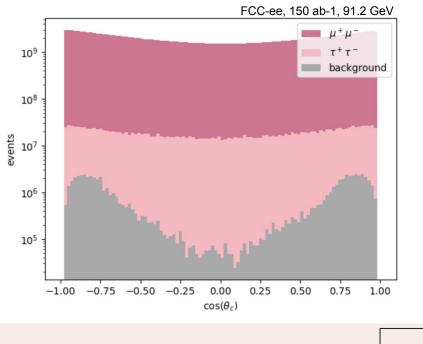
Integration Method: A_{FB}

- Integrate signal on $\cos(\theta_c) \in (0, 1)$ for forward cross section (σ_F)
- Integrate signal on $\cos(\theta_c) \in (-1, 0)$ for backward cross section($\sigma_{\rm R}$)
- AFB formula:

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

- AFB = 2.1139061×10^{-2}

7

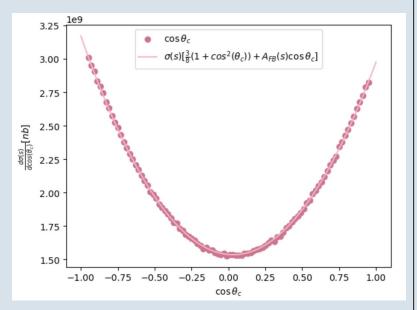

Integration Method: Statistical Uncertainty

- variance derived from AFB:

$$\sigma_{AFB}^{2} = \left(\frac{\partial A_{FB}}{\partial F}^{2}\right)(\sigma_{F}^{2}) + \left(\frac{\partial A_{FB}}{\partial B}\right)^{2}\right)(\sigma_{B}^{2})$$

$$= \frac{4\sigma_{f}\sigma_{b}}{(\sigma_{f} + \sigma_{b})^{3}}$$

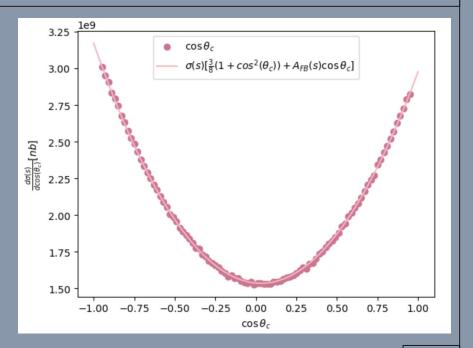
-
$$\sigma_{AFB} = 2.401836 \times 10^{-6}$$



χ^2 Goodness of Fit Test

- Plotted $\mu^+\mu^-$ as a scatter plot
- Fitted with the differential cross section for muon pair production ("Born" form)

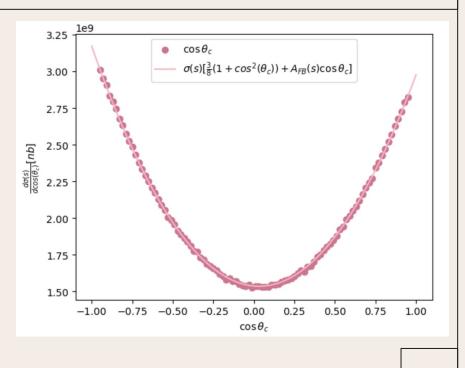
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \sigma(s) \cdot \left\{ \frac{3}{8} (1 + \cos^2\theta_c) + A_{FB}(s) \cdot \cos\theta_c) \right\}$$


- χ^2 test statistic = 0.068
 - greater than significance level 0.05, so reject null
 - conclusion: this is a good fit for the data!

χ^2 Fit Method: A_{FB}

- Extract optimal parameters of curve fit to find AFB!
- AFB = 2.287339×10^{-2}

10

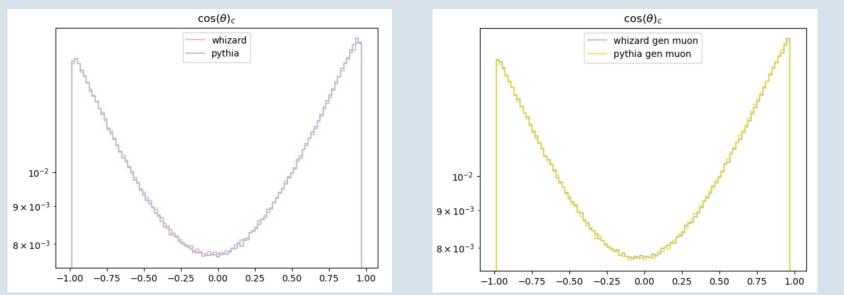


χ^2 Fit Method: Statistical Uncertainty

covariance matrix shows how closely two parameters are related:

9.757 × 10⁷ -5.619 × 10⁻¹⁰ -5.619 × 10⁻¹⁰ 5.849 × 10⁻¹²

- the smaller the values, the closer the parameters are
- diagonal elements are variance of parameters (A_{FB} and σ_{AFB})
- $\sigma_{AFB} = \sqrt{5.849 \times 10^{-12}}$ = 2.41837113 × 10⁻⁶



11

Reconstructed Particles vs. Generator-Level Muons

Reconstructed

Generator-Level

- Whizard and Pythia samples are incredibly similar!

Comparison

	Integrated AFB	Fitted AFB
Pythia (reconstructed)	0.02113906 ± 2.40e-6	0.02287340 ± 2.42e-6
Pythia (generated)	0.02117956 ± 2.40e-6	0.02288089 ± 2.42e-6
Whizard (reconstructed)	0.02072299 ± 2.16e-6	0.02204227 ± 2.18e-6
Whizard (generated)	0.02070853 ± 2.16e-6	0.02204227 ± 2.18e-6
KKMC (reconstructed)	0.00144506 ± 2.31e-6	0.00127578 ± 2.32e-6
KKMC (generated)	0.00144514 ± 2.31e-6	0.00127641 ± 2.32e-6
L3 Collaboration Results	0.0086 ± 0.0051	N/A