Keep this next to you when you work
through Section 8 (or any sorting
problems)!

Level 1: Sorting Cheat-Sheet

Sorting Cheat Sheet

insertion selection merge quick heap
worst n2 n2 n*logn nA2 n*logn
In practice n2 n2 n*logn n*logn n*logn
best n nA2 n*logn n*logn n
In place yes yes no yes yes
stable yes no yes no no

Sorting Buzz Words

e Stable:
Any equal items remain in the same relative order before and after the sort.

e In-Place:
Requires only O(1) extra space to perform the sort.

Level 2: Sorting Overview

Selection Sort

Repeatedly select the smallest remaining item and swap it to its proper index.

1. Find the smallest item in the array, and swap it with the first item.
2. Find the next smallest item in the array, and swap it with the next item.
3. Continue until all items in the array are sorted.

We look through entire remaining array every time to find the minimum.

Selection Sort

public void selectionSort(collection) ({
for (entire list)
int newIndex = findNextMin (currentItem);
swap (newIndex, currentlItem);

}

public int findNextMin (currentItem) {
min = currentlItem
for (unsorted list)

if (item < min)
min = currentItem
38 47 50 48 return min
}
public int swap (newIndex, currentItem) {
temp = currentlItem
currentItem = newlndex
newlIndex = currentItem

5 3 4 2

15 18 36 27 44

If this video doesn’t play try logging into }
UW Net or using Firefox. IDK why this
happens on Chrome....

https://docs.google.com/file/d/1USxpxmSHSAJcTTCh_ZwP4Y3cEBPPtbHa/preview

Selection Sort Stability

Repeatedly select the smallest remaining item and swap it to its proper index.

1. Find the smallest item in the array, and swap it with the first item.
2. Find the next smallest item in the array, and swap it with the next item.
3. Continue until all items in the array are sorted.

Selection sort is not stable. Give an example.

Selection Sort Stability

Repeatedly select the smallest remaining item and swap it to its proper index.

1. Find the smallest item in the array, and swap it with the first item.
2. Find the next smallest item in the array, and swap it with the next item.
3. Continue until all items in the array are sorted.

Selection sort is not stable. Give an example.

Selection Sort Stability

Repeatedly select the smallest remaining item and swap it to its proper index.

1. Find the smallest item in the array, and swap it with the first item.
2. Find the next smallest item in the array, and swap it with the next item.
3. Continue until all items in the array are sorted.

Selection sort is not stable. Give an example.

sorted
|

B

2A and 2B are not in the same relative order!

Insertion Sort

Build a sorted subarray (like selection sort) by using left-neighbor swaps for
stability.

Scan from left to right...

1. Ifanitem is out of order with respect to its left-neighbor, swap left.
2. Keep on swapping left until the item is in order with respect to its
left-neighbor.

Insertion Sort

44 47 36 26 27 2

46

19 50 48

sk first olemest s sorted
for mazh umsorted alument X
fextract' the alesent X

Af current slemant)} > X
maye socted almeat to

public void insertionSort (collection) {
for (entire list)
if (currentItem is smaller than largestSorted)
int newIndex = findSpot (currentItem);
shift (newIndex, currentlItem);
}
public int findSpot (currentItem) (
for (sorted list)
if (spot found) return
}

public void shift (newIndex, currentItem) {

for (i = currentItem > newlIndex)
item[i+l] = item[i]
item[newIndex] = currentItem

https://docs.google.com/file/d/1Qnv1uGTe7ylVIY5x7yy5pDivWynxzZYz/preview

Insertion Sort Stability

Build a sorted subarray (like selection sort) by using left-neighbor swaps for
stability.
Scan from left to right...

1. If anitem is out of order with respect to its left-neighbor, swap left.
2. Keep on swapping left until the item is in order with respect to its

left-neighbor.

Insertion sort is stable. Give an example.

Insertion Sort Stability

Build a sorted subarray (like selection sort) by using left-neighbor swaps for
stability.
Scan from left to right...

1. If anitem is out of order with respect to its left-neighbor, swap left.
2. Keep on swapping left until the item is in order with respect to its

left-neighbor.

Insertion sort is stable. Give an example. Al 4a | 2B

Insertion Sort Stability

Build a sorted subarray (like selection sort) by using left-neighbor swaps for
stability.
Scan from left to right...

1. If anitem is out of order with respect to its left-neighbor, swap left.
2. Keep on swapping left until the item is in order with respect to its

left-neighbor.
soqed

3,12, (3|2

A A B

Insertion sort is stable. Give an example.

Insertion Sort Stability

Build a sorted subarray (like selection sort) by using left-neighbor swaps for
stability.
Scan from left to right...

1. If anitem is out of order with respect to its left-neighbor, swap left.
2. Keep on swapping left until the item is in order with respect to its

left-neighbor. sorted

Insertion sort is stable. Give an example.

Insertion Sort Stability

Build a sorted subarray (like selection sort) by using left-neighbor swaps for
stability.
Scan from left to right...

1. If anitem is out of order with respect to its left-neighbor, swap left.
2. Keep on swapping left until the item is in order with respect to its

left-neighbor. sorted
A

2,134 |3%| %

Insertion sort is stable. Give an example.

Insertion Sort Stability

Build a sorted subarray (like selection sort) by using left-neighbor swaps for
stability.
Scan from left to right...

1. If anitem is out of order with respect to its left-neighbor, swap left.
2. Keep on swapping left until the item is in order with respect to its

left-neighbor. sorted

Insertion sort is stable. Give an example.

Relative orders never broken!

Merge Sort

8 2 57 2] 22
8 2 57 Sl 22
8 2 57 I 22
9 2
22 91
2 8 22 57 gl
\
2 8 22 57 il

mergeSort (input) {

if (input.length == 1)
return
else

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge (smallerHalf, largerHalf)

If array is of size 1, return.
Merge sort the left half.
Merge sort the right half.

B w N e

Merge the two sorted halves.

Stable! — uses the fact that left-half items
come before right-half items.

Heap Sort

0 i | 2 3 4 5 6 7 8 9
1 | a4] 2 | 14 | 15 | 18 16 17 | 20 | 2 |
_i He'ap Modifies the input to be in descending
Current ltem (reverse sorted) order!

0 2 3 4 5 6
| | 2 [1 | 15 | 18 16 1| Possible fixes:

1) Reverse the output (in O(n))

\% percolateDown(22) Heyap 2) Use a max heap

Current Item

3) Reverse heap compare function to
emulate a max heap

E[]
et 4

(n)
heap[n -

1]

public void inPlaceHeapSort(collection) {
heap = buildHeap (collection)

removeMin (heap)

In-place Heap Sort

Avoid extra copies of data to save memory by treating the input array as a heap.
We'll use a max heap for this sort.

1. Floyd’s buildHeap. Efficient heap construction by percolating down on
nodes in reverse level order (starting from the back of our input array).

2. Once heap-ified, call removeMax() and place max item after remainder of
heap in array. Repeat this step N times.

Heap Sort Stability

1. Floyd’s buildHeap.
2. Repeat N times:
a. Call removeMax().
b. Put max item after heap in the array.

Heap sort is not stable. Give an example.

Heap Sort Stability

1. Floyd’s buildHeap. G
2. Repeat N times:

a. Call removeMax(). G G

b. Put max item after heap in the array.

Heap sort is not stable. Give an example.

Heap Sort Stability

1. Floyd’s buildHeap. G
2. Repeat N times:

a. Call removeMax(). G G

b. Put max item after heap in the array.

sorted

Heap sort is not stable. Give an example.

To [T

Relative order messed up!

Heap Sort Stability

1. Floyd’s buildHeap. e
2. Repeat N times:
a. Call removeMax(). G
b. Put max item after heap in the array.
. . sorted
Heap sort is not stable. Give an example. |
1C 1B

Relative orders messed up!

And so on...

Quick Sort

1. Partition around a pivot item, e.g. leftmost item.
2. Quicksort left side, all keys < pivot.
3. Quicksort right side, all keys 2 pivot (can put equal items on left as well).

Stable?
Quick Sort is not stable r 321151 2 |17 119|126 | 41| 17 | 17

because equal items
are arbitrarily placed

on the left or right of ”— -
the pivot so their Partition(32) s 32 z 32
relative orders may | A
change. L{ \

Other partitioning 151 2 |17 (19|26 | 17 | 17 | 32 | 41
algorithms can result in

a stable Quick Sort. 32's final position

Quick Sort Stability

Relative order messed up!

Level 3: In-Depth Sorting Walkthroughs

These are also Problems 2A-2E on the Section 8 PDF.

To see the walkthroughs, click the buttons!

In-Depth Sorting Walkthroughs

® A:Insertion Sort Answer
e B: Selection Sort Answer
e C:In-place Heap Sort Answer
e D: Merge Sort Answer
e E: Quicksort Answer

https://docs.google.com/presentation/d/10b9aRqpGJu8pUk8OpfqUIEEm8ou-zmmC7b_BE5wgNg0/edit?usp=sharing
https://docs.google.com/presentation/d/10b9aRqpGJu8pUk8OpfqUIEEm8ou-zmmC7b_BE5wgNg0/edit?usp=sharing
https://docs.google.com/presentation/d/10b9aRqpGJu8pUk8OpfqUIEEm8ou-zmmC7b_BE5wgNg0/edit?usp=sharing
https://docs.google.com/presentation/d/1p6g3r9BpwTARjUylA0V0yspP2temzHNJEJjCG41I4r0/edit?usp=sharing
https://docs.google.com/presentation/d/1p6g3r9BpwTARjUylA0V0yspP2temzHNJEJjCG41I4r0/edit?usp=sharing
https://docs.google.com/presentation/d/1p6g3r9BpwTARjUylA0V0yspP2temzHNJEJjCG41I4r0/edit?usp=sharing
https://docs.google.com/presentation/d/19Dk-Jl1DIj8E5a2v5Ha_qVl3nqr0F5joZ-D1cB59hDc/edit?usp=sharing
https://docs.google.com/presentation/d/19Dk-Jl1DIj8E5a2v5Ha_qVl3nqr0F5joZ-D1cB59hDc/edit?usp=sharing
https://docs.google.com/presentation/d/19Dk-Jl1DIj8E5a2v5Ha_qVl3nqr0F5joZ-D1cB59hDc/edit?usp=sharing
https://docs.google.com/presentation/d/1h-gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/edit?usp=sharing
https://docs.google.com/presentation/d/1h-gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/edit?usp=sharing
https://docs.google.com/presentation/d/1h-gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/edit?usp=sharing
https://docs.google.com/presentation/d/1QjAs-zx1i0_XWlLqsKtexb-iueao9jNLkN-gW9QxAD0/edit?usp=sharing
https://docs.google.com/presentation/d/1QjAs-zx1i0_XWlLqsKtexb-iueao9jNLkN-gW9QxAD0/edit?usp=sharing
https://docs.google.com/presentation/d/1QjAs-zx1i0_XWlLqsKtexb-iueao9jNLkN-gW9QxAD0/edit?usp=sharing

