
Design Faust DSP
with a Web-based Graph Editor

Programmable Audio Workshop 2020

Shihong Ren
shihong.ren@univ-st-etienne.fr



Faust as an interpreter

- Write DSP in Faust = available on a large variety of platforms
- Everything in Faust is functional audio stream
- Block-diagram algebra (BDA)



Faust as a text-based language

- user-friendliness vs. machine-friendliness
- Block-diagram
- Tools and IDEs



Graph-to-code intepreter

Code-free

- Build an audio graph with boxes and cables
- Generate Faust codes
- Compile Faust codes to a block-diagram / DSP



Max/Gen ?

Genʼs approach

- Operator as box with IO
- Analyze from outputs to inputs
- loops with one-sample delay
- sub-process

out1 = in1 + in2;
out2 = in2;
out3 = 0;



How to generate ?

- Functions



How to generate ?

- Functions



How to generate ?

- Loops 

(recursive composition)



How to generate ?

- subprocess: code-block



How to generate ?

- subprocess: sub-patcher



How to generate ?

- iterators: par, seq, sum, prod



How to generate ?

- parameters / UI



Workshop

- JSPatcher (very experimental): https://fr0stbyter.github.io/jspatcher/dist/
- Faust IDE: https://faustide.grame.fr/

Please use the Chrome Browser

https://fr0stbyter.github.io/jspatcher/dist/
https://faustide.grame.fr/


Workshop

examples: 

- https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/paw.zip
- this link will reset your workspace, make sure you have your project downloaded

https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/paw.zip

