Learning Based Error Mitigation for VQE

Introduction

Motivation

- Learning based error mitigation (LBEM)
 - Promising new method of error mitigation
 - Doesn't require prior knowledge of noise models
 - Training circuits can be efficiently simulated

- Variational quantum eigensolver (VQE) for molecule ground state calculation
 - Important application of near-term quantum computers
 - Noise limits its use

\Rightarrow Let's try LBEM on VQE!

Theory of Learning Based Error Mitigation

Quantum Error Mitigation

- Current quantum hardware is noisy
- Quantum error correction
 - Idea: Use entanglement to preserve quantum state
 - $\circ \quad \text{Large overhead} \rightarrow \text{infeasible!}$
- Quantum error mitigation
 - Idea: noisy measurement results → approximate of accurate result
 - Ex) Zero-noise extrapolation:
 - Expectation values @ different noise levels
 - \rightarrow extrapolate to zero noise

Zero noise extrapolation diagram

Kandala, A., Temme, K., Córcoles, A.D. *et al.* Error mitigation extends the computational reach of a noisy quantum processor. *Nature* 567, 491–495 (2019)

Learning Based Error Mitigation (LBEM) [1]

- Model: $com^{EM}(R, I) = \sum q(P)com(R, P)$
 - Error mitigated expectation value of circuit **R**: $com^{EM}(R, I)$
 - Noisy expectation value circuit **R modified by P**: com(R, P)
 - Quasi-probability: q(P)
 - Modify by P: insert Pauli operators **P** before & after single qubit gates in **R**
- \Rightarrow Learn q(P) by minimizing empirical error of training set
 - $\circ \quad \mbox{Training set: clifford gates} \rightarrow \mbox{efficient to classically simulate, noise-model independent}$

[1] Strikis, Armands, et al. "Learning-based quantum error mitigation." PRX Quantum 2.4 (2021): 040330.

[LBEM Diagram]

Experiment Design

Experiment Flow

- Training Session
 - Create Ansatz & Hamiltonian
 - Generate training/error-mitigated circuits
 - Generate training circuits by substituting the *R* gates in Ansatz with single-qubit Clifford gates
 - Generate error-mitigated circuits by inserting a Pauli gate before each R gate
 - For Ansatz with more than one R gate, truncate the number of circuits by using only a portion of Clifford group and Pauli words
 - Calculate expectation values
 - Append measurement circuits to training/error-mitigated circuits with respect to the given Hamiltonian
 - Calculate the expectation value of Hamiltonian with training circuits on a simulator
 - Calculate the expectation value of Hamiltonian with error-mitigated circuits on a noisy backend
 - Optimize q(P) to minimize the prediction error
- Testing Session
 - Calculate the expectation value with optimized q(P)

Experiment Results

1. LBEM - simple circuit

• Objective: Determine expectation value of a given pauli sum.

 \Rightarrow Error is mitigated for both simulated noise models and real hardware

2. LBEM - A Gate circuit

- Objective: Try for a more complex circuit with 2 parametrized gates
- Ansatz:
 - 2 parameterized gates
 - 4² Pauli gates
 - 24² Clifford gates

 q_0 - X - R_Y R_Z R_Z R_Z R_Z R_Z R_Z R_Z R_Z R_Z R_Z

Results:

⇒ Error is mitigated for both simulated noise models and real hardware (hardware: train set truncate to 50 training circuits)

```
Using LBEM for a VQE
```


2. LBEM for H_2 simulation (PES curve)

Backend: FakeVigo

The exact energy is calculated using NumpyEigenSolver

The error mitigated value is closer to the exact energy value than the noisy one.

3. Effects of Training Set Truncation - LiH

- Objective: calculate LiH energy at certain parameters
- Particle preserving ansatz:
 - 16 parameterized gates
 - 4¹⁶ Pauli gates
 - 24¹⁶ Clifford gates

- Problem: # parameterized gates $\uparrow \rightarrow$ # training circuits, paulis increase **exponentially**
- ⇒ Randomly truncate training circuits & paulis (# training circuits = 3 * # paulis, following [1])

[1] Strikis, Armands, et al. "Learning-based quantum error mitigation." PRX Quantum 2.4 (2021): 040330.

3. Effects of Training Set Truncation - LiH

- Classical simulation LBEM for |P| = 2, 5, 10, 20, 50
- Depolarizing error model used

 \Rightarrow High |P| generally mitigated more error

Results Summary

- 1. H_2 Simulation with simple ansatz
 - a. Error mitigated for depolarizing model, FakeVigo model, and ibm_perth hardware

- 2. H_2 Simulation with A gate ansatz
 - a. Error mitigated for FakeVigo model
 - b. Simulated noisy VQE with error mitigation gave accurate results

- 3. Effects of Training Set Truncation LiH
 - a. Number of training circuits increase exponentially \rightarrow truncate
 - b. Larger number of training circuits give better mitigation results

Discussion

Future Work

- Apply effective truncation methods for feasible training
 - As the problem size grows, the size of possible combinations of single-qubit Clifford gates and Pauli gates to be used in the circuit grows exponentially
 - Simulating LBEM using noise models might provide insights into dominant Pauli words in q(P), which, in turn, can be selected for efficient training on real QPU
- Compare LBEM to other mitigation methods
 - Error mitigation methods such as Zero Noise Extrapolation, Clifford Data Regression, Dynamic Decoupling, etc. have been proposed
 - Analytical comparison to such methods could reveal the dominant factor of errors on existing quantum devices
- Combine LBEM with other mitigation methods
 - Different mitigation methods are proposed to combat different types of noises
 - Careful combination of error mitigation methods can lead to efficiency and better performance