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Introduction
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Motivation

● Learning based error mitigation (LBEM)
○ Promising new method of error mitigation
○ Doesn’t require prior knowledge of noise models
○ Training circuits can be efficiently simulated

● Variational quantum eigensolver (VQE) for molecule ground state calculation
○ Important application of near-term quantum computers
○ Noise limits its use

⇒ Let’s try LBEM on VQE!
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Theory of Learning Based Error Mitigation
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Zero noise extrapolation diagram
Kandala, A., Temme, K., Córcoles, A.D. et al. Error mitigation extends the computational 

reach of a noisy quantum processor. Nature 567, 491–495 (2019)

Quantum Error Mitigation

● Current quantum hardware is noisy 

● Quantum error correction
○ Idea: Use entanglement to preserve 

quantum state
○ Large overhead → infeasible!

● Quantum error mitigation
○ Idea: noisy measurement results → 

approximate of accurate result
○ Ex) Zero-noise extrapolation:
○ Expectation values @ different noise levels 

→ extrapolate to zero noise 
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Learning Based Error Mitigation (LBEM) [1]

● Model:
○ Error mitigated expectation value of circuit R:
○ Noisy expectation value circuit R modified by P:
○ Quasi-probability: 
○ Modify by P: insert Pauli operators P before & after single qubit gates in R

⇒ Learn       by minimizing empirical error of training set
○ Training set: clifford gates → efficient to classically simulate, noise-model independent

 

[1] Strikis, Armands, et al. "Learning-based quantum error mitigation." PRX Quantum 2.4 (2021): 040330.
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https://doi.org/10.1103/PRXQuantum.2.040330
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Experiment Design
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Experiment Flow

● Training Session
○ Create Ansatz & Hamiltonian
○ Generate training/error-mitigated circuits

■ Generate training circuits by substituting the R gates in Ansatz with single-qubit Clifford gates
■ Generate error-mitigated circuits by inserting a Pauli gate before each R gate
■ For Ansatz with more than one R gate, truncate the number of circuits by using only a portion of Clifford 

group and Pauli words
○ Calculate expectation values

■ Append measurement circuits to training/error-mitigated circuits with respect to the given Hamiltonian
■ Calculate the expectation value of Hamiltonian with training circuits on a simulator
■ Calculate the expectation value of Hamiltonian with error-mitigated circuits on a noisy backend

○ Optimize          to minimize the prediction error

● Testing Session
○ Calculate the expectation value with optimized 
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Experiment Results
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● Objective: Determine expectation value of a given pauli sum.

● Ansatz:
○ 1 parameterized gates
○ 41 Pauli gates
○ 241 Clifford gates

● Results:

⇒ Error is mitigated for both simulated noise models and real hardware

1. LBEM - simple circuit

          <Ψ(Φ) |H |Ψ(Φ)> 

|Ψ(Φ)>
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● Objective: Try for a more complex circuit with 2 parametrized gates

● Ansatz:
○ 2 parameterized gates
○ 42 Pauli gates
○ 242 Clifford gates

● Results:

⇒ Error is mitigated for both simulated noise models and real hardware (hardware: train set truncate to 50 training circuits)

2. LBEM - A Gate circuit 
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H2 A Gate Circuit ibm_belem



Using LBEM for a VQE

    Learn Error
VQE 
Ansatz q(P)

      VQE + EMmolecule 
error mitigated 
ground state 
energy 
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2. LBEM for H2 simulation (PES curve)

Backend: FakeVigo

The exact energy is calculated 
using NumpyEigenSolver

The error mitigated value is closer 
to the exact energy value than the 
noisy one.
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3.  Effects of Training Set Truncation - LiH

● Objective: calculate LiH energy at certain parameters
● Particle preserving ansatz:

○ 16 parameterized gates
○ 416 Pauli gates
○ 2416 Clifford gates

● Problem: # parameterized gates ↑ → # training circuits, paulis increase exponentially

⇒ Randomly truncate training circuits & paulis (# training circuits = 3 * # paulis, following [1])

[1] Strikis, Armands, et al. "Learning-based quantum error mitigation." PRX Quantum 2.4 (2021): 040330.
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https://doi.org/10.1103/PRXQuantum.2.040330


3.  Effects of Training Set Truncation - LiH

● Classical simulation LBEM for |P| = 2, 5, 10, 20, 50
● Depolarizing error model used 

⇒ High |P| generally mitigated more error
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Results Summary

1. H2 Simulation with simple ansatz
a. Error mitigated for depolarizing model, FakeVigo model, and ibm_perth hardware

2. H2 Simulation with A gate ansatz
a. Error mitigated for FakeVigo model
b. Simulated noisy VQE with error mitigation gave accurate results

3. Effects of Training Set Truncation - LiH
a. Number of training circuits increase exponentially → truncate
b. Larger number of training circuits give better mitigation results
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Discussion
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Future Work

● Apply effective truncation methods for feasible training
○ As the problem size grows, the size of possible combinations of single-qubit Clifford gates and 

Pauli gates to be used in the circuit grows exponentially
○ Simulating LBEM using noise models might provide insights into dominant Pauli words in        , 

which, in turn, can be selected for efficient training on real QPU

● Compare LBEM to other mitigation methods
○ Error mitigation methods such as Zero Noise Extrapolation, Clifford Data Regression, Dynamic 

Decoupling, etc. have been proposed
○ Analytical comparison to such methods could reveal the dominant factor of errors on existing 

quantum devices

● Combine LBEM with other mitigation methods
○ Different mitigation methods are proposed to combat different types of noises
○ Careful combination of error mitigation methods can lead to efficiency and better performance
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