NATURAL ENVIRONMENTAL GRADIENTS PREDICT THE MICROHABITAT USAGE, FINE-SCALE DISTRIBUTION, AND ABUNDANCE OF THREE WOODLAND SALAMANDERS IN AN OLD-GROWTH FOREST
J. Alex Baecher, author
Stephen C. Richter, committee chair
Brad R. Ruhfel & David R. Brown, committee
Introduction:�Biological gradients
BD Todd, UC Berkeley
(Hutchinson 1957,
MacArthur & Wilson 1976, Simberloff 1974)
Introduction:�Amphibians
Capps et al. 2014, Luhring et al. 2017
Introduction:�Woodland salamanders
(direct-developing, lungless salamanders)
‡ Wyman 1998, Walton 2013
§ Burton & Likens 1975, Semlitsch 2014
Producers & Decomposers
2⁰
consumer
3⁰
consumer
1⁰
consumer
†Burton & Likens 1975, Petranka & Murray 2001, Semlitsch et al. 2014
Introduction:�Role of woodland salamanders
Producers & Decomposers
1⁰
consumer
Carbon retention
Introduction:�Population Ecology
Yap et al. 2015
Salamander Diversity
Predicted Abundance
High
Low
Introduction:�Challenges & Objectives
Objectives
Determine if natural environmental gradients influence the 1.) microhabitat use, fine-scale distribution, and abundance of terrestrial salamanders; and 2.) determine if those patterns are species-specific.
They’ll never find me in here
Methods:�Study Location
Southwest
Northeast
Shallow, loamy soil Deep, organic soil
Xeric Mesic
High solar exp. Low solar exp.
Methods:�Sampling plots:
Shop Hollow
0.08 ha
ca. 7% upland area
Kelley Hoefer
Methods: �Salamander species
P. richmondi
P. kentucki
P. glutinosus
Eastern slimy salamander
(Green 1838)
Cumberland Plateau salamander
(Mittleman 1951)
Southern ravine salamander
(Netting and Mittleman 1938)
Methods:�Salamander Surveys
Methods:�Microhabitat surveys
0.08 ha
3 m
Methods:�Site Covariates
Quantifying site-level variation in environmental conditions using:
I) In situ measurements
II) Geospatially derived…
Methods:�Site Covariates—Geospatial
0.08 ha
3 m
Study Location
Kelley Hoefer
Methods:�Site Covariates—Geospatial
3 m
Methods:�Site Covariates—Geospatial
NE
SW
Beers Aspect
Methods:�Site Covariates—Geospatial
pro.arcgis.com
High
Low
Direct Solar Radiation
Kelley Hoefer
Methods:�Site Covariates—Geospatial
LCW boundary
Methods:�Site Covariates—Geospatial
Methods:�Sampling covariates
Image: BD Todd, UC Berkeley
Methods:�Data analysis—microhabitat & body size
Image: BD Todd, UC Berkeley
Does body size predict thermal microhabitat preference?
Do thermal microhabitat preferences vary among species?
Do thermal microhabitat preferences differ from ambient microhabitat temperature?
Statistical procedures performed in R programming environment (v. 3.4.1., R Core Team 2017)
Methods:�Data analysis—hierarchical modeling
Image: BD Todd, UC Berkeley
Do environmental gradients influence the occupancy and abundance of Plethodon salamanders in LCW?
Do patterns of species co-occurrence vary along natural environmental gradients?
Results:�Microhabitat usage
Image: BD Todd, UC Berkeley
Does body size predict thermal microhabitat preference?
p = 0.002
p < 0.004
A
A
B
Results:�Microhabitat usage
Image: BD Todd, UC Berkeley
Do thermal microhabitat preferences vary among species, and/or differ from ambient microhabitat temperature
B
B
A
Results:�Population Parameters
Positive effect
Negative effect
Soil moisture
Northeasterliness
Canopy density
Canopy openness
Elevation
Solar Radiation
Topographic convexity
Image: BD Todd, UC Berkeley
*
Indicates a 95% CI not containing “0”
No effect
: Estimated abundance
: Occupancy probability
Do natural environmental gradients influence the fine-scale distribution and abundance of Plethodon salamanders in LCW?
*
Heterogeneous effects
Results:�Population Parameters—P. richmondi
Image: BD Todd, UC Berkeley
*
Indicates a 95% CI not containing “0”
: Occupancy probability
: Estimated abundance
Soil moisture
Northeasterliness
Canopy density
Canopy openness
Elevation
Solar Radiation
Topographic convexity
Results:�Population Parameters—P. kentucki
Image: BD Todd, UC Berkeley
Canopy closure
Soil moisture
Elevation
Northeasterliness
Solar radiation
Topographic convexity
Canopy openness
*
Indicates a 95% CI not containing “0”
: Occupancy probability
: Estimated abundance
Results:�Population Parameters—P. glutinosus
Image: BD Todd, UC Berkeley
Canopy density
Northeasterliness
Topographic convexity
Elevation
Solar radiation
Soil moisture
Canopy openness
*
Indicates a 95% CI not containing “0”
: Occupancy probability
: Estimated abundance
Results:�Fine-scale distribution—P. richmondi
Image: BD Todd, UC Berkeley
(Canopy Density)
Results:�Fine-scale distribution—P. kentucki
Image: BD Todd, UC Berkeley
(Canopy Density)
Fine-scale distribution:�Fine-scale distribution—P. glutinosus
Image: BD Todd, UC Berkeley
(Canopy Density)
Results:�Abundance—P. richmondi
Image: BD Todd, UC Berkeley
(%)
(NE)
(SW)
Results:�Abundance—P. kentucki
Image: BD Todd, UC Berkeley
(Ravine)
(Ridge)
Fine-scale distribution:�Co-occurrence—P. richmondi & kentucki
Image: BD Todd, UC Berkeley
Do patterns of co-occurrence vary along natural environmental gradients?
Is it resultant of interspecies competition, perhaps due to resource limitation or physical stress?
Results:�Co-occurrence—P. richmondi & kentucki
Image: BD Todd, UC Berkeley
Probability of P. richmondi occupying a site where P. kentucki is known to be present
(Canopy Density)
Discussion:�Fine-scale distribution and abundance
Discussion:�Microhabitat usage & body size
† Spight 1968, Peterman et al. 2013, Riddell & Sears 2015
‡Jaeger 1971, Shoener 1974, Farallo & Miles 2016
Discussion:�Microhabitat usage & body size
Discussion:�Conservation implications
—2.77 kg۰ha-2
Discussion:�Conservation implications
Acknowledgements:
Image: BD Todd, UC Berkeley
Questions:�and pictures of salamanders
Image: BD Todd, UC Berkeley
Plethodon caddoensis (Caddo Mountain salamander)
Caddo Mountain, Arkansas—2013
Plethodon wehrlei (Wehrle’s salamander)
Lilley Cornett Woods, Kentucky—2016
Plethodon jordani (Jordan’s red-cheeked salamander)
Great Smoky Mtns, North Carolina—2015
Plethodon yonahlossee (Yonahlossee salamander)
Whitetop Mountain, Virginia—2016