Projectiles Math Lab

Graphing, Predicting, Robot Paintball, Curve Fitting And MORE!

Why Projectiles?

If you have to ask, you won't get it...

Projectiles are FUN!

And you can learn quite a lot of Math and Physics, too...

Gears

Gears is a Virtual Robotics platform.

We are going to use it to model some projectile rocketry before launching the real deal.

Let's open the Gears platform

http://a9i.sg/gears

Projectile Basics

When you shoot an object, the two main factors in determining its path and distance to impact are:

- Initial Speed
- Projectile Angle

Click image to experiment with **general** projectile physics (NOTE: not exactly applicable to GearsBot Paintball)

Setup Simulator

- Select Simulator
- Select World
- ChoosePaintballChallenges

Setup Simulator - Firing Range

Change to Firing Range Challenge

Setup Simulator - Firing Range

Change Camera to get a good view of entire Firing Range:

Select Robot

Select the **Paintball** Robot.

Paintball Robot

- Note which Motors you need to control to shoot balls!
 - Port D: Moves canon up and down (Angle)
 - Port E: Spring-loaded mechanism to shoot (Speed)

Actuators

- Port A: Left Wheel
- · Port B: Right Wheel
- Port C : Electromagnet
- · Port D : Motorized Arm
- Port E: Paintball Launcher

Projectile Basics - Vary Angle

Projectile Basics - Vary Angle

Make sure to RESET each time.

Experiment with running the program twice without resetting to see the unwanted behavior.

Projectile Basics - Firing Range

- Now to shoot, you need to wind the internal spring back
- And then let go...

This is how much we are loading the spring....

run motor on port Dv at 2 %v for v? degrees v
run motor on port Ev at 1-100 %v for 1000 degrees v
run motor on port Ev at 1 %v for 1 degrees v

This is just to release the spring mechanism... eg SHOOT

Projectile Basics - Experiment with Velocity

- Experiment with changing Velocity
- Try different values from 0 to 1000

```
run motor on port D v at 12 % v for 145 degrees v
run motor on port E v at 1-100 % v for 1000 degrees v
run motor on port E v at 1 % v for 1 degrees v
```

Velocity depends on this setting

Some Math, Finally - Graphing

Keep varying the **Velocity**, and record on your graph paper the distance travelled. Can you draw a curve line that fits the points? What is the shape

of this line?

In this example, the distance is around 270cm

Projectile Basics - Experiment with Angle

- Experiment with changing Angle
- Try different values from 0 to 90

```
run motor on port Dv at 12 %v for 45 degrees v
run motor on port Ev at 1-100 %v for 1000 degrees v
run motor on port Ev at 11 %v for 11 degrees v
```

Some Math, Finally - Graphing

Keep varying the **Angle**, and record on your graph paper the distance travelled. Can you draw a curve line that fits the points? What is the shape

of this line?

In this example, the distance is around 270cm

Best Angle

Use the above technique to find the **peak-distance angle**.

That is, the angle that gives you the farthest distance for your shot, given a constant initial velocity.

Hitting a Target

Hitting a Target

- Switch to the Variable Range challenge
- This challenge will provide you with a target to hit
- Target position changes on every reset

Hitting a Target

- Visually check the distance to the target
- Use the graphs you have prepared to determine the best angle and velocity to launch the paintball
- Try with **both** graphs.
 - Use 45 degs, and determine the correct velocity
 - Use 1000 power, and determine the correct angle

In this example, the target is around 150cm away

Hitting a Target Autonomously

- To hit the target autonomously, the robot will need to decide for itself, the right angle and velocity to use...
- ...but the robot can't read your graph, so you'll need to convert it into an equation!
- What is the equation of the best fit curve you have drawn?

Distance - Velocity

The relationship between distance and velocity looks like this...

Distance = $Velocity^2 \times K$

Where K is a constant.

We'll need to solve for the value of K

Solving: Distance = Velocity² x K

- Pick one of the point on your graph
- Read the distance and velocity at the point
- Substitute these values into the equation and solve for **K**...

Example (distance = 230cm and velocity = 850)

```
230 = 850^2 \times K
```

$$230 = 722500K$$

K = 0.000318 (...don't copy this; it's not correct. Calculate yourself)

 You should repeat this for each of your points, and determine what is the best K to use

Calculating Velocity

Rearrange the equation to make Velocity the subject...

```
Distance = Velocity<sup>2</sup> x K

Velocity<sup>2</sup> = Distance / K

Velocity = sqrt(Distance / K)
```

- The distance to the target can be determined using the laser distance sensor on the robot...

 [laser distance on port Auto in cm]
- ...and you can write the equation in blocks as...

```
square root v laser distance on port Auto v in cm v ÷ v 0.000318 degrees v
```

Turning and Detecting Targets

- In the "Find the Target"
 challenge, the target is at a random position (...not in front of the robot)
- You will need to turn the robot to face the target
- How can you detect the target?

Turning the Robot

- You can turn the robot using a "move tank" block (...under the Motion category
- Set one wheel to move forward (positive number) and the other to move back (negative number)
- The robot will keep moving until it receives a stop command

Use a "stop moving" command to stop the robot.

Detecting the Target

- Use the "Laser distance" sensor
- What distance is reported when there is nothing in front of the robot?
- You can use these blocks to determine if there is a target in front of the robot. Can you figure out how?

Find the Target Challenge

- Combine the autonomous target hitting program with the target finding program
- Test your program and make sure your robot can find and hit the target by itself!

Bonus Challenge: High and Low

- Four targets
 - All are 200cm away
 - Target 1: 100cm above robot
 - o Target 2: 50cm above robot
 - Target 3: Same level as robot
 - o Target 4: 50cm below robot
- Experiment and find how the velocity / angle affects the height of the paintball
- Plot it out, what is the shape of the graph?

