Near Term | Done and To-Do

epi

- What's currently implemented in ElCrecon?
 - Calorimetry
 - Tracking
 - Primary vertexing
 - PID

- Initial lepton-hadron separation (e-finder)
- Initial Hadron ID (LUTs)
- FF/FB (matrix RP reconstruction)
- Holistic:
 - E-finder
 - Jets
 - ZDC neutron reconstruction
 - Kinematics (available for inclusive DIS with DIS lepton finder)

- Identified near term to-dos:
 - Implement secondary vertexing
 - Transition from LUTs to full reconstruction of hadron IDs
 - RP/OMD ML Reconstruction
 - Reclustering clusters with tracks
 - Initial particle flow implementation
- Possible near-term tasks:
 - Merging PID from different sources
 - E.g. combining RICH and clusters, or TOF and RICH detectors
 - Refitting tracks with PID info
 - Reclustering based on PID info
 - Realistic timeframe unfolder (see slide 3)

Output | What Goes into *.eicrecon.root?

- **Partially-complete information:** some implemented, but some missing
 - The set of kinematics
 - The set of reconstructed particles
 - E.g. improving separating out the neutrals from charged
- Missing information:
 - Interaction metadata NOT reliant on MCParticles like x-section
 - Propagation of simulation and reconstruction metadata
 - Uncertainties on all reconstructed quantities (see right)

- **Uncertainties:** need to propagate uncertainties for fitted quantities
 - E.g. tracking variables from ACTS (momentum, etc.)
 - Similarly, will be needed for other quantities that involve fits like PID
- **TBD:** will likely require broader discussion
 - Should kinematics be wrt the detector?
 Or Born kinematics? Both?
 - How will analysis metadata be handled?
- **Note:** HepMC lacks a good field to store polarization
 - (This is a known issue)

Streaming | How does it impact reconstruction?

- Where does streaming make difference?
 - I.e. where do we need frame-level algorithms vs. event-level algorithms?
 - Likely most will be event-level

- Example of a frame-level algorithm: The timeslice unfolder
 - IDs an interesting timeslice (something that could be a physics event) and passes it to event-level algorithms
 - Need to define milestones for realistic time-frame unfolder

- Will need: an algorithm to assess the event-level output
 - I.e. is it a physics event? Or background?
 - Should happen *before* beginning any iterations in reconstruction...

• Long-term: the classifying algorithm will need physics, accelerator knowledge to build realistic classifiers

Miscellaneous | Various Thoughts

- Where can ML help?
 - Combining PID, tracking, calo info to make reconstructed particles
 - Reclustering (e.g. combining tracking info to update calo clusters)
 - Event classification (e.g. DIS vs. DVCS)

- What validation tools do we need?
 - For physics performance (benchmarking) of algorithms
 - For IDing where we can speed up our reconstruction

- What prerequisites are there for reconstruction?
 - Calorimeter calibrations (e.g.
 PID-dependent calorimeter calibrations)

Planning | Possible Work Packages

- In-progress tasks:
 - Secondary Vertexing
 - ML RP/OMD Reconstruction
 - Tracking-based calo reclustering
 - Initial particle flow implementation

- For discussion: possible work packages for the remaining year based on slides
 - Tracking package
 - Propagating track uncertainties
 [doable]
 - Refitting tracks based on PID hypotheses [hard]

- For discussion (cont.): possible work packages
 - PID package
 - Implementing a PID merging algorithm
 [doable]
 - Propagation of PID uncertainties
 [doable]
 - Implementing a cross-detector type PID merging algorithm [hard]
 - Transitioning from LUTs to full reconstruction [hard]

Key: grade reflects my own feelings on (and ignorance of) tasks

- [easy] definitely doable by 2025
- [doable] reasonably doable by 2025 (with some effort)
- [hard] very challenging to get done by 2025

Planning | Possible Work Packages

- For discussion : possible work packages for the remaining year
 - Meta package
 - Propagating interaction metadata not via MCParticles [hard]
 - Propagating simulation and reconstruction metadata [hard]
 - Streaming package
 - Defining milestones for a realistic timeslice unfolder [easy]
 - Develop a prototype event assessor [doable]

• For discussion (cont.): possible work packages for the remaining year

- Calo package
 - Reclustering based on PID hypotheses [easy]
- Event package
 - Complete the set of kinematics
 [doable]

Key: grade reflects my own feelings on (and ignorance of) tasks

- [easy] definitely doable by 2025
- [doable] reasonably doable by 2025 (with some effort)
- [hard] very challenging to get done by 2025

