
Testing and Debugging
The scientific process of debugging, the information problem,
and the value in automated testing.

Kevin Lin, with thanks to many others.
1

https://courses.cs.washington.edu/courses/cse373/19au/acknowledgements/

Feedback from the Reading Quiz

Relatable list of incorrect assumptions. (Are assumptions bad?)

What does it mean to reproduce a bug?

How to write code so that it’s easier to debug.

“Debugging is twice as hard as writing the code in the first place. Therefore, if you
write the code as cleverly as possible, you [won’t be able] to debug it.”

How to develop tests that cover the edge cases.

2
The Elements of Programming Style (Kernighan/McGraw-Hill)

Real world analogues

Rubber duck assisting with debugging (Tom Morris/Wikimedia)

3

Minimal working example

Rubber duck debugging

Scientific method

https://stackoverflow.com/help/minimal-reproducible-example
https://rubberduckdebugging.com
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/#start-doing-experiments

ArrayQueue Demo

4

The Role of Information

5
What does debugging a program look like? (Julia Evans); The Debugging Mindset (Devon H. O’Dell/ACM Queue)

How are bugs fixed? Here’s one proposal.

• Productive changes fix bugs.

• Information gathered about the
system informs productive changes.

• A hypothesis guides information
gathering and testing.

• Things we know about the problem
inform how we choose hypotheses.

ArrayQueue maintains certain invariants.
Unexpected result after add and remove.

A bug exists in the ArrayQueue isEmpty
method.

Information ???

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

1

2

3

https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/#weird-methods-to-get-information
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/#weird-methods-to-get-information

Generating Hypotheses

6

A good hypothesis identifies the cause of failure separately from where and when the
program actually fails. The state of the ArrayQueue determines the behavior of isEmpty.

Item[] data

int size

int front

int back

State

A bug exists in the ArrayQueue isEmpty
method.

Information ???

2

3

The Debugging Mindset (Devon H. O’Dell/ACM Queue)

Descriptive Hypotheses

7

A good hypothesis identifies the cause of failure separate from where and when the program
actually fails. The state of the ArrayQueue determines the behavior of isEmpty.

The hypothesis on the left suggests more about the problem than the one on the right.

A bug exists in the ArrayQueue isEmpty
method.

The Debugging Mindset (Devon H. O’Dell/ACM Queue)

The size variable is not set correctly,
causing isEmpty to return false.

8

Tests as a Source of Information

ArrayQueue1<Integer> queue = new ArrayQueue1<>();

queue.add(1);

queue.remove();

queue.add(3);

queue.remove();

queue.remove();

queue.add(6);

queue.remove();

System.out.println(

 "isEmpty() expected true, got " + queue.isEmpty());

Propose a new hypothesis that, upon answering, could yield
more information.

9

Hypotheses

10

Reference may cause the error in the program.

The method is unable to correctly remove elements from the data structure.

Two remove methods were used when there was only one value in the queue.

The remove is not used correctly.

Gathering Information

11

Ad-Hoc Testing

queue.add(1);

queue.remove();

queue.add(3);

queue.remove();

queue.remove();

queue.add(6);

queue.remove();

System.out.println(
 "..." + queue.isEmpty());

12

queue.add(0);

queue.remove();

queue.add(2);

queue.add(3);

queue.add(5);

queue.add(6);

System.out.println(
 "..." + queue.remove());

ArrayQueue1.main ArrayQueue2.main

JUnit Testing

13

Simple JUnit Testing

Call org.junit.Assert.assertEquals(...) to check that the expected equals the actual. If not,
program terminates with a verbose message.

We can use this in place of writing out long print messages just to compare two arguments.

JUnit supports many more methods. (Check the online JUnit documentation for more.)

• assertEquals

• assertFalse

• assertNotNull

14

org.junit.Assert.assertEquals(expected, actual); ArrayQueueTest method

Better JUnit Testing

The messages output by JUnit are kind of ugly, and invoking each test manually is annoying.

IntelliJ has built-in support for JUnit.

1. Annotate each test (Java method) with @org.junit.Test.

2. Change all test methods to non-static.

3. Use IntelliJ’s built-in JUnit runner to run all tests and tabulate results.

This is called boilerplate code. IntelliJ can generate this code for you!

15

@org.junit.Test ArrayQueueTest

https://www.jetbrains.com/help/idea/tdd-with-intellij-idea.html#3905d0c8

Even Better JUnit Testing

Don’t want to type out the name of the library (org.junit.Test, org.junit.Assert.assertEquals)?

To workaround this annoyance, start every file with two import statements.

16

import org.junit.Test;

import static org.junit.Assert.*;

ArrayQueueTest

The Role of Information

17
What does debugging a program look like? (Julia Evans); The Debugging Mindset (Devon H. O’Dell/ACM Queue)

How are bugs fixed? Here’s one proposal.

• Productive changes fix bugs.

• Information gathered about the
system informs productive changes.

• A hypothesis guides information
gathering and testing.

• Things we know about the problem
inform how we choose hypotheses.

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

Two new regression tests

https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/#weird-methods-to-get-information
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/#weird-methods-to-get-information

Testing as Planning

Suppose we’re implementing ArrayQueue.

1. Describe a unit test we might want
to write for ArrayQueue.

2. What behaviors does this test
check? Describe in terms of the
methods it checks as well as
concepts like contracts, invariants,
etc. that we’ve discussed in class.

18

Q

Implementer

Client

ADT

Describe a unit test we might want to write for ArrayDeque.

19

Testing as Planning

Not only does running a test improve our
understanding of a problem, but so does
writing a test!

Tests are hard to write, but easy to run.

Maximize the benefit of testing by writing
tests first (or early) and code afterwards.

20

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

What does debugging a program look like? (Julia Evans)

“I’m almost done, I just need to make sure it works.”
– Famous last words

https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/#weird-methods-to-get-information
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/#weird-methods-to-get-information

Test-Driven Development

1. Identify a new feature.

2. Write a unit test for that feature.

3. RED: Run the test. It should fail.

4. GREEN: Write code that passes test.

5. REFACTOR: Improve code quality.

21

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

What does debugging a program look like? (Julia Evans); Red-Shirt, Red, Green, Refactor - A TDD Fairytale (Ryan Tablada)

https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/#weird-methods-to-get-information
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/#weird-methods-to-get-information

Running tests is virtually free compared to other sciences
22

Algorithms (Robert Sedgewick, Kevin Wayne/Princeton)

Chemistry
(~1 test/day)

Biology
(~1 test/month)

Physics
(~1 test/month+)

CS
(1+ test/sec)

The Role of Information

23
What does debugging a program look like? (Julia Evans); The Debugging Mindset (Devon H. O’Dell/ACM Queue)

How are bugs fixed? Here’s one proposal.

• Productive changes fix bugs.

• Information gathered about the
system informs productive changes.

• A hypothesis guides information
gathering and testing.

• Things we know about the problem
inform how we choose hypotheses.

ArrayQueue maintains certain invariants.
Unexpected result after add and remove.

The remove method decrements the size
variable even when the queue is empty.

Modify the remove method to handle the
special case of removing if empty.

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

1

2

3

https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/#weird-methods-to-get-information
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/#weird-methods-to-get-information

