
Lecture 7: Word
Representations

Practical Natural Language Processing
Rasika Bhalerao

r.bhalerao@northeastern.edu

Reminders

● Project proposal due today

● Assignment 5 due Mar 2

● (Spring break is Mar 4 - 12)

● Midterm exam is Mar 14 - 16

● Assignment 6 due Mar 23

About the midterm exam

● We will go over the practice midterm exam solutions today

● The midterm exam will be available on Canvas at the beginning of March 14

● It will be due 11:59pm March 16

● There will be no lecture on March 16

What did we do last week?

● Coreference resolution (determining which terms co-refer to the same NP)
● Unsupervised learning

○ Clustering
■ Flat (iterative until you get one solution, like KMeans)
■ Hierarchical (gives a tree of nested clusters)

○ Topic modeling via LDA
■ Analyze “themes” in document collection
■ Understand which topics are present in each document
■ Use LDA vectors anywhere you need document vectors

○ Dimension reduction via PCA
■ Understand which dimensions are most important
■ Reduce data down to 2 most important dimensions for plotting

Remember: Cosine Similarity

● A common measurement in NLP is cosine similarity

● Measures the angle between two vectors
● 0 → orthogonal
● 1 → same direction
● -1 → opposite direction

Today’s agenda
● Word Representations

○ J&M chapter 6

● Intro to Neural Networks

○ Start of J&M chapter 7

● Discuss practice midterm exam

Word Representations
Jurafsky & Martin chapter 6

Word Vector Intuition

Edible

Washingtonian

Californian

Natural

0.95

0.85

0.09

0.7

Apple

0.94

0.11

0.85

0.7

Grape

0.07

0.82

0.09

0.7

Tree

0.06

0.08

0.85

0.7

Vine
Apple

Grape

Vine

Tree

.

.

.

Apple – Tree + Vine = Grape

We will calculate these vectors in a self-supervised way.

Word Vector Intuition

● Distributional Hypothesis: words with similar meanings appear in similar
contexts in the text

● First attempt at word vectors: co-occurrence matrix (aka term-context matrix)

Word Vector Evaluation

● SimLex-999 is one of several datasets of human
judgements of word similarity (averaged over
multiple annotators)

● Evaluation: correlation between cosine similarity
of vectors and human similarity judgements

Drawbacks of that “first attempt”

● Huge sparse vectors

● Some words show up overall less often, but they should still matter more
because they are more important

○ For example, “extraordinary” shows up less often than “the” but is probably more important in
determining word meanings

○ Possible solution: take into account how often you would expect two words to co-occur given
their proportion in the text (PMI)

● Better solution: Word2Vec (and GloVe and FastText)

Using context

Assumption: words that show up in similar contexts have similar meaning

Word2Vec: A Fake Task

● Make vectors where each word has an index
○ (like Bag of Words/Tfidf vectors)
○ Represent each word as a “one-hot encoded” vector (1 for that word, 0 everywhere else)
○ These vectors are the input and output for the fake task

● There are two options for the fake task:
○ Continuous Bag of Words (CBOW)

■ Input: context words that surround v in the text, knowing word v is missing
■ Output: word v

○ Skip-Gram
■ Input: word v
■ Output: words that surround v in the text

Index for
each
context
word

H
0

H
1

H
2

.

.

.
H

m-2
H

m-1

Hidden
Layer

Matrix W
|vocab| x |HL|

Matrix W’
|HL| x |vocab|

0
1
0
0
0

0
0
0
1
0

.

.

.

words
in given
context

0
0
0
1
0
0
0
0

Index of
correct
word
missing
in
context

Input vectors
(context)

Output
vector

Times

Ti
m

es

Times Product

Training CBOW

Product

W and W’ Matrices

W

|vocab|

|Hidden Layer|

W’

|Hidden Layer|

|vocab|

How to train the network

● Data

○ Positive examples: pairs of words that are in context of each other

○ Negative examples: pairs of words that are not in context of each other

■ Negative sampling: sample these, because if you use all such pairs, that’s way too many

● Training

○ Goal: Find values in matrices W and W’

○ How: stochastic gradient descent

Stochastic Gradient Descent

1. Make random guesses for all the values in W and W’
2. Repeat until loss stops decreasing:

a. For each example in the training data:
i. Forward pass:

1. Do the multiplications in the network with the current values in W and W’, get an
output vector VEC of length |V|

2. Do softmax on VEC to get the actual output vector VEC
ii. Backward pass:

1. Calculate the gradient of the loss function at this point (derivative w.r.t. each
element of W and W’)

2. Update values in W and W’ by taking a “step” in the direction of the gradient
a. The “stochastic” part means that sometimes we sometimes randomly take a

step in the opposite direction to avoid local minima

Softmax

● Turns a vector of all sorts of numbers (positive, negative, extremely large) into
a vector where all numbers are between 0 and 1, and the vector adds up to 1.

● Numbers that were bigger in the original vector are still bigger after softmax

● This way, you can compare the one-hot vector of the expected output to this
softmaxed output

Loss function

● Loss = difference between the softmaxed output and the expected output
(one-hot encoded target word)

● To minimize loss, we take its derivative and take a “step” in the direction of the
slope

● We keep taking “steps” until we hit a local minimum (the loss stops changing)

● Taking a “step” = adjusting the weights in W and W’

Index for
each
context
word

H
0

H
1

H
2

.

.

.
H

m-2
H

m-1

Hidden
Layer

Matrix W
|vocab| x |HL|

Matrix W’
|HL| x |vocab|

0
1
0
0
0

0
0
0
1
0

.

.

.

words
in given
context

Input vectors
(context)

Output
vector

Times

Ti
m

es

Times Product

Revisit CBOW

Product

P(v
0
)

P(v
1
)

.

.

.
P(v

n-2
)

P(v
n-1

)

0
0
0
1
0
0
0
0

Index of
given
word

Input vector

Matrix W
|vocab| x |HL|

Times

H
0

H
1

H
2

.

.

.
H

m-2
H

m-1

Product

Hidden Layer

Matrix W’
|vocab| x |HL|

Times

Softm
ax

(of p
roduct)

0
1
0
0
0

0
0
0
1
0

.

.

.

words
in given
context

Output vectors (context)

Index for
each
context
word

Softmax(of product)

Skip-Gram

Some results

These vectors from Distributed Representations of Words and Phrases and their Compositionality (Mikilov et al.) were trained on a day of Google News.

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

Other results from J&M

Other results from J&M

GloVe and FastText

● So far, we covered Word2Vec with CBOW and Skip Gram

● GloVe
○ Like Word2Vec, but it is trained by doing matrix factorization on the co-occurrence matrix (so it

reduces the dimension of the co-occurrence matrix)

● FastText
○ Made by Facebook AI

○ Like Word2Vec, but using character ngrams instead of words

■ Each word’s vector is the average of the vectors of its character ngrams

○ This has the advantage that if there is a word that wasn’t in your training set, you can still
assign it a vector from its ngrams

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

Historical shift in word meanings

Bias
● Some datasets yield computer programmer:man::homemaker:woman

(Bolukbasi 2016)

○ Allocation bias: a computer may downrank job applications based on gender

● Vectors for African-American names are closer to unpleasant words while
vectors for European-American names are closer to pleasant words (Caliskan
2017)

○ Representational harm: a computer may represent some groups as worse (or ignore them)

● Bias amplification: sometimes the social bias encoded in word embeddings is
more exaggerated than actual employment statistics (Garg 2018)

https://arxiv.org/pdf/1607.06520.pdf
https://arxiv.org/abs/1608.07187
https://arxiv.org/abs/1608.07187
https://www.pnas.org/doi/pdf/10.1073/pnas.1720347115

Neural Networks
Jurafsky & Martin chapter 7

Neural Networks

The network that we saw for Word2Vec is an example of a fully connected neural
network with 1 hidden layer

○ The elements of the vectors in each layer are the neurons
○ “Fully connected” means that each neuron in each layer is used to calculate each neuron in the

next layer
○ It was also “feedforward” because the computation goes from each layer to the next (no looping

back to previous layers)

Input layer Output layer
Hidden layer

Neural Networks

● “Neural” because it is inspired by biological neurons

● Universal Approximation Theorem for Neural Networks: you can approximate
any function using a neural network

● You don’t need fancy feature templates based on domain knowledge - you
can just throw the words as features, and the network learns what is important

● Deep learning = neural networks with many layers

Building Block: Perceptron

● A perceptron is a linear classifier
● A weight for each feature, plus a bias

1

(bias)

> 0?

Neural unit: Perceptron + activation function

● Why? differentiable, has numbers between 0 and 1
● As before, x1, x2, … are input and y is output
● w1, w2, … and b are the weights we want to learn
● Sigmoid is a popular activation function

Multi-layer Perceptrons (MLP)

● Is actually multiple layers of neural units
(including the activation function), not
just perceptrons

● Word2Vec is a MLP with a linear
activation function (y = x) for the hidden
layer

● MLPs often have the softmax on the
output layer to turn it into a probability
distribution, like in Word2Vec

● Why? Because MLPs can model
functions that are not linearly separable

Multi-layer Perceptrons (MLP)

U = W[2]
Each g is an activation function
including g[2], which is softmax

Training a Neural Network

● Minimize a loss function
● Common loss function for

classification: cross-entropy loss
(aka log-loss or negative
log-likelihood)

● yi is the true labels and ŷi is the
output

● So, yi is 0 for all “negative” labels
and 1 for positive

● Ps. Cross-entropy between
distributions p and q = entropy of p
+ KL-divergence from p of q

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html

Training a Neural Network: Computation Graph

● We use forward pass and backward pass as described for Word2Vec
● How do we update weights when the outputs depend on each other?
● Example computation graph:

Computation Graph + Chain Rule

Training a Neural Network

Elements of a Neural Network

http://playground.tensorflow.org/

http://playground.tensorflow.org/

Preview of next week (J&M ch. 7)

Word2Vec notebook

https://colab.research.google.com/drive/1XIgc_6svhMJc6dAwBOfJIxUcKmVerTD_?usp=sharing

Discuss practice midterm exam

