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Reminders

● Project proposal due today

● Assignment 5 due Mar 2

● (Spring break is Mar 4 - 12)

● Midterm exam is Mar 14 - 16

● Assignment 6 due Mar 23



About the midterm exam

● We will go over the practice midterm exam solutions today

● The midterm exam will be available on Canvas at the beginning of March 14

● It will be due 11:59pm March 16

● There will be no lecture on March 16



What did we do last week?

● Coreference resolution (determining which terms co-refer to the same NP)
● Unsupervised learning

○ Clustering
■ Flat (iterative until you get one solution, like KMeans)
■ Hierarchical (gives a tree of nested clusters)

○ Topic modeling via LDA
■ Analyze “themes” in document collection
■ Understand which topics are present in each document
■ Use LDA vectors anywhere you need document vectors

○ Dimension reduction via PCA
■ Understand which dimensions are most important
■ Reduce data down to 2 most important dimensions for plotting



Remember: Cosine Similarity

● A common measurement in NLP is cosine similarity

● Measures the angle between two vectors
● 0 → orthogonal
● 1 → same direction
● -1 → opposite direction



Today’s agenda
● Word Representations

○ J&M chapter 6

● Intro to Neural Networks

○ Start of J&M chapter 7

● Discuss practice midterm exam



Word Representations
Jurafsky & Martin chapter 6



Word Vector Intuition
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We will calculate these vectors in a self-supervised way.



Word Vector Intuition

● Distributional Hypothesis: words with similar meanings appear in similar 
contexts in the text

● First attempt at word vectors: co-occurrence matrix (aka term-context matrix)



Word Vector Evaluation

● SimLex-999 is one of several datasets of human 
judgements of word similarity (averaged over 
multiple annotators)

● Evaluation: correlation between cosine similarity 
of vectors and human similarity judgements



Drawbacks of that “first attempt”

● Huge sparse vectors

● Some words show up overall less often, but they should still matter more 
because they are more important

○ For example, “extraordinary” shows up less often than “the” but is probably more important in 
determining word meanings

○ Possible solution: take into account how often you would expect two words to co-occur given 
their proportion in the text (PMI)

● Better solution: Word2Vec (and GloVe and FastText)



Using context

Assumption: words that show up in similar contexts have similar meaning



Word2Vec: A Fake Task

● Make vectors where each word has an index
○ (like Bag of Words/Tfidf vectors)
○ Represent each word as a “one-hot encoded” vector (1 for that word, 0 everywhere else)
○ These vectors are the input and output for the fake task

● There are two options for the fake task:
○ Continuous Bag of Words (CBOW)

■ Input: context words that surround v in the text, knowing word v is missing
■ Output: word v

○ Skip-Gram
■ Input: word v
■ Output: words that surround v in the text
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How to train the network

● Data

○ Positive examples: pairs of words that are in context of each other

○ Negative examples: pairs of words that are not in context of each other

■ Negative sampling: sample these, because if you use all such pairs, that’s way too many

● Training

○ Goal: Find values in matrices W and W’

○ How: stochastic gradient descent



Stochastic Gradient Descent

1. Make random guesses for all the values in W and W’
2. Repeat until loss stops decreasing:

a. For each example in the training data:
i. Forward pass:

1. Do the multiplications in the network with the current values in W and W’, get an 
output vector VEC of length |V|

2. Do softmax on VEC to get the actual output vector VEC
ii. Backward pass:

1. Calculate the gradient of the loss function at this point (derivative w.r.t. each 
element of W and W’)

2. Update values in W and W’ by taking a “step” in the direction of the gradient
a. The “stochastic” part means that sometimes we sometimes randomly take a 

step in the opposite direction to avoid local minima



Softmax

● Turns a vector of all sorts of numbers (positive, negative, extremely large) into 
a vector where all numbers are between 0 and 1, and the vector adds up to 1.

● Numbers that were bigger in the original vector are still bigger after softmax

● This way, you can compare the one-hot vector of the expected output to this 
softmaxed output



Loss function

● Loss = difference between the softmaxed output and the expected output 
(one-hot encoded target word)

● To minimize loss, we take its derivative and take a “step” in the direction of the 
slope

● We keep taking “steps” until we hit a local minimum (the loss stops changing)

● Taking a “step” = adjusting the weights in W and W’
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Some results

These vectors from Distributed Representations of Words and Phrases and their Compositionality (Mikilov et al.) were trained on a day of Google News.

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf


Other results from J&M



Other results from J&M



GloVe and FastText

● So far, we covered Word2Vec with CBOW and Skip Gram

● GloVe
○ Like Word2Vec, but it is trained by doing matrix factorization on the co-occurrence matrix (so it 

reduces the dimension of the co-occurrence matrix)

● FastText
○ Made by Facebook AI

○ Like Word2Vec, but using character ngrams instead of words

■ Each word’s vector is the average of the vectors of its character ngrams

○ This has the advantage that if there is a word that wasn’t in your training set, you can still 
assign it a vector from its ngrams

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/


Historical shift in word meanings



Bias
● Some datasets yield computer programmer:man::homemaker:woman 

(Bolukbasi 2016)

○ Allocation bias: a computer may downrank job applications based on gender

● Vectors for African-American names are closer to unpleasant words while 
vectors for European-American names are closer to pleasant words (Caliskan 
2017)

○ Representational harm: a computer may represent some groups as worse (or ignore them)

● Bias amplification: sometimes the social bias encoded in word embeddings is 
more exaggerated than actual employment statistics (Garg 2018)

https://arxiv.org/pdf/1607.06520.pdf
https://arxiv.org/abs/1608.07187
https://arxiv.org/abs/1608.07187
https://www.pnas.org/doi/pdf/10.1073/pnas.1720347115


Neural Networks
Jurafsky & Martin chapter 7



Neural Networks

The network that we saw for Word2Vec is an example of a fully connected neural 
network with 1 hidden layer

○ The elements of the vectors in each layer are the neurons
○ “Fully connected” means that each neuron in each layer is used to calculate each neuron in the 

next layer
○ It was also “feedforward” because the computation goes from each layer to the next (no looping 

back to previous layers)

Input layer Output layer
Hidden layer



Neural Networks

● “Neural” because it is inspired by biological neurons

● Universal Approximation Theorem for Neural Networks: you can approximate 
any function using a neural network

● You don’t need fancy feature templates based on domain knowledge - you 
can just throw the words as features, and the network learns what is important

● Deep learning = neural networks with many layers



Building Block: Perceptron

● A perceptron is a linear classifier
● A weight for each feature, plus a bias

1

(bias)

> 0?



Neural unit: Perceptron + activation function

● Why? differentiable, has numbers between 0 and 1
● As before, x1, x2, … are input and y is output
● w1, w2, … and b are the weights we want to learn
● Sigmoid is a popular activation function



Multi-layer Perceptrons (MLP)

● Is actually multiple layers of neural units 
(including the activation function), not 
just perceptrons

● Word2Vec is a MLP with a linear 
activation function (y = x) for the hidden 
layer

● MLPs often have the softmax on the 
output layer to turn it into a probability 
distribution, like in Word2Vec

● Why? Because MLPs can model 
functions that are not linearly separable



Multi-layer Perceptrons (MLP)

U = W[2]
Each g is an activation function
including g[2], which is softmax



Training a Neural Network

● Minimize a loss function
● Common loss function for 

classification: cross-entropy loss 
(aka log-loss or negative 
log-likelihood)

● yi is the true labels and ŷi is the 
output

● So, yi is 0 for all “negative” labels 
and 1 for positive

● Ps. Cross-entropy between 
distributions p and q = entropy of p 
+ KL-divergence from p of q

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html 

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html


Training a Neural Network: Computation Graph

● We use forward pass and backward pass as described for Word2Vec
● How do we update weights when the outputs depend on each other?
● Example computation graph:



Computation Graph + Chain Rule



Training a Neural Network



Elements of a Neural Network

http://playground.tensorflow.org/ 

http://playground.tensorflow.org/


Preview of next week (J&M ch. 7)



Word2Vec notebook

https://colab.research.google.com/drive/1XIgc_6svhMJc6dAwBOfJIxUcKmVerTD_?usp=sharing


Discuss practice midterm exam


