
Tail Recursion Review
Spring 2016

Quick note on Orders of Growth

● O(n), O(log n), O(1), etc.
● Orders of Growth describe functions

○ Typically use for runtime
○ Can be used for other things

● This section focuses on memory usage

Memory Usage in Python

def fact(n):
 if n == 0:
 return 1
 else:
 return n*fact(n-1)

def fact(n):
 total = 1
 while n > 0:
 total = total*n
 n -= 1
 return total

Memory Usage in Python

def fact(n):
 if n == 0:
 return 1
 else:
 return n*fact(n-1)

O(n) space: n frames

def fact(n):
 total = 1
 while n > 0:
 total = total*n
 n -= 1
 return total

O(1) space: 2 variables

So… What does this mean?

● Two functions can have same runtime and different
memory usage

● Iterative functions use less space because they only
have one frame

But what about Scheme? We have no iteration!

Tail Recursion Optimization!

Let's walk through an example:

(define (factorial n)
 (define (helper i total)
 (if (> i n) total
 (helper (+ i 1) (* total i))
 (helper 1 1))

Env. Diagram (Python code)

http://pythontutor.com/composingprograms.html#code=def+factorial(n%29%3A%0A++++def+helper(i,+total%29%3A%0A++++++++if+i+%3E+n%3A%0A++++++++++++return+total%0A++++++++else%3A%0A++++++++++++return+helper(i%2B1,+total*i%29%0A++++return+helper(1,+1%29%0A++++%0Afactorial(5%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=30

What does this mean?

● We don't need to keep all of the extra frames around
● We can just get rid of them when we're done with them
● If we do this, we get constant space!

How do we know what we can delete?

Rule of thumb: If a function call is returned directly, the
frame can be deleted.

Ex:

(helper (+ i 1) (* i total)) (* n (fact (- n 1)))

Yes! No!

Must occur in a tail context

Last expression in:
● define
● begin
● and
● or

Non-predicates of `if` (2nd or 3rd)
Last expression of each clause in `cond` (but not predicates)

Is this tail recursive?

(define (find s v)

 (cond ((null? s) False)

 ((= v (car s)) True)

 ((find (cdr s) v) True)

 (else False)))

Is this tail recursive?

(define (find s v)

 (cond ((null? s) False)

 ((= v (car s)) True)

 ((find (cdr s) v) True)

 (else False)))

No - We don't return the recursive call. The conditional of a cond is not a tail
context.

Is this tail recursive?

(define (find s v)

 (cond ((null? s) False)

 ((= v (car s)) True)

 (else (find (cdr s) v))))

Is this tail recursive?

(define (find s v)

 (cond ((null? s) False)

 ((= v (car s)) True)

 (else (find (cdr s) v))))

Yes - We return the recursive call. The end of a cond is a tail context.

Reverse Tail Recursion

Practice Problem: Write a tail-recursive version of reverse
in Scheme.

(define (reverse xs)

'YOUR-CODE-HERE

)

Python Reverse

def reverse(xs):
 result = Link.empty
 while xs is not Link.empty:
 result = Link(xs.first, result)
 xs = xs.rest
 return result

Scheme Solution

(define (reverse xs)
 (define (reverse-iter xs result)
 (if (null? xs)
 result
 (reverse-iter (cdr xs) (cons (car xs) result)))
 (reverse-iter xs nil))

Counting Stars (Summer 2015)

scm> (count 3 '(1 3 4 3))

2

scm> (count 42 '(4 2))

0

(define (count num lst)

 (define (helper lst total)

)

(helper ______ _______))

Counting Stars (Summer 2015)

(define (count num lst)

 (define (helper lst total)

 (cond ((null? lst) total)

 ((= (car lst) num) (helper (cdr lst) (+ total 1)))

 (else (helper (cdr lst) total))))

(helper lst 0))

Filter

scm> (filter is-odd? '(1 2 3 4 5))

(1 3 5)

(define (filter fn lst)

 'YOUR-CODE-HERE

)

Filter

(define (filter fn lst)

 (define (helper lst result)

 (cond

 ((null? lst) result)

 ((fn (car lst)) (helper (cdr lst) (cons (car lst)

result))

 (else (helper (cdr lst) result))))

 (helper (reverse lst) nil))

